JavaEE:JVM

基本介绍

JVM:Java虚拟机,用于解释执行Java字节码

jdk:Java开发工具包

jre:Java运行时环境

C++语言将写入的程序直接编译成二进制的机器语言,而java不想重新编译,希望能直接执行。Java先通过javac把.java文件转成.class文件,.class文件是字节码文件,包含Java字节码,然后Java把这个字节码文件在某个具体的平台上执行。此时再通过jvm把上述的字节码转成对应的CPU能识别的机器指令

当前主流的JVM:HotSpot VM


JVM中的内存区域划分

JVM其实也是一个进程,就是在任务管理器中能看到的Java进程

进程运行的过程中,要从操作系统申请一些资源(典型资源:内存),申请到的内存空间可以支撑后续Java程序的执行。

比如:在Java中定义变量,就会申请内存,这里的申请就是由jvm完成的

而jvm申请的这一块内存还会根据实际的用途划分出不同的空间(区域划分)

1.堆:代码中new出来的对象,对象中持有的非静态成员变量都是在堆里(只有一份)

2.栈:本地方法栈包含了方法调用关系和局部变量,虚拟机栈记录了Java代码的调用关系,Java代码的局部变量(一般提到的栈指的是虚拟机栈)(可以有n份,n与线程相关)

这里的堆和栈和数据结构里的不一样

这里的堆和栈都是内存区域,而数据结构的堆是一颗二叉树,栈是后进先出的数据结构

3.程序计数器:空间比较小,存储下一条要执行的Java指令的地址(有n份)

x86的CPU也有一个类似的寄存器:eip

4.元数据区:保存类的信息和方法的信息 (只有1份)

类的信息:类的名称,继承哪个类,实现的接口;有什么属性,属性名字,属性类型,权限;有什么方法,方法名字,方法参数,权限等等

“元数据(meta data)”:往往指一些描述性质或者辅助性质的属性


笔试题

class Test{private int n;private static int m;
}main(){Test t = new Test();
}

上述代码里的t, n, m各自处于jvm哪个区域

t是一个局部变量(引用类型),这个变量在栈上

n是Test的成员变量,处于堆上

m是static修饰的变量,称为类属性,存在类对象中,也属于元数据区


JVM的类加载机制

类加载:Java进程运行的时候需要把.class文件从硬盘读取到内存并进行一系列的校验解析的过程

过程(5个步骤)

1.加载:把硬盘上的.class文件找到打开文件,读取文件内容(读到的是二进制数据)

如何查找对应的文件?双亲委派模型(一种查找策略)

2.验证:确保读到的文件是合法的.class文件(验证依据:Java的虚拟机规范)

3.准备:给类对象申请内存空间,申请到的内存空间里面的默认值是0

4.解析:针对类中字符串常量进行处理,将常量池中的符号替换成直接引用的过程

class Test{private String s = "hello";
}

 

在代码中我们知道s相当于包含了"hello"字符串常量的地址,但是在文件中是不存在"地址"这样的概念的。地址是内存的地址,硬盘里没有地址。

虽然没有地址,但是我们可以存储一个类似于地址的偏移量

把hello字符串的开头到文件开头就是一个偏移量

此处文件中填充给s的hello的偏移量就认为是符号引用,接下来把.class文件加载到内存中,先把"hello"这个字符串加载到内存中,此时“hello”就有地址了,s里面的值就可以替换成当前“hello”真实的地址了,可以直接引用这个地址了

5.初始化:针对类对象完成后续的初始化(要执行代码块的逻辑,甚至会触发父类的加载)


双亲委派模型(重点)

JVM中的类加载操作有一个专门的模块:类加载器

作用:给定全限定类名,也就是带有包名的类名,比如java.lang.String就是一个全限定类名,能找到.class文件

默认有三个

BootstrapClassLoader:负责查找标准库的目录

ExtensionClassLoader:负责查找扩展库的目录

ApplicationClassLoader:负责查找当前项目的代码目录以及第三方库的目录

上述三个类加载器存在父子关系,这个父子关系类似于二叉树,有一个指针parent,指向自己的父类加载器

双亲委派模型的工作过程:

1.从ApplicationClassLoader作为入口,先开始工作

2.ApplicationClassLoader不会立即搜索自己负责的目录,会把搜索的任务交给自己的父亲

3.代码进入到ExtensionClassLoader的范畴,ExtensionClassLoader也不会立即搜索自己负责的目录,会把搜索任务交给父亲

4.BoostrapClassLoader没有父亲,没办法推脱搜索任务了,才会真正搜索自己负责的标准库目录。通过全限定类名,尝试在标准库目录中找到符合要求的.class文件

找到了就直接进入打开文件和读文件的流程;如果没到找,返回给孩子类加载器,继续尝试加载

5.ExtensionClassLoader收到交回的任务后,在自己负责的扩展库目录搜索,找到了进入后续流程,没找到再丢给自己孩子

6.ApplicationClassLoader收到交回的任务后,自己进行搜索负责的目录。再找不到就抛出ClassNotFoundException 异常

上述执行顺序的好处:

1)确保几个类加载器之间的优先级

2)用户自定义的类不会被jvm加载,可以防止自定义类不小心和标准库中的类名字重复


JVM的垃圾回收机制(GC机制)

基本情况

这个机制不需要程序员手动释放内存。程序回自动判断某个内存是否会继续使用,如果内存后续不用了,就会自动释放掉。

垃圾回收中一个重要问题:STW(stop the world)问题——触发垃圾回收的时候,可能会使当前程序的其他业务逻辑被暂停

垃圾回收内存的话,那内存里面几个区域里面情况如何?

1)程序计数器 -- 不需要GC

2)栈 -- 不需要GC,因为局部变量在代码块执行结束之后自动销毁

3)元数据区/方法区 -- 不需要GC,因为一般都是涉及类加载而不是类卸载

4)堆 -- GC的主要工作区域

所以,垃圾回收回收内存,不如说是回收对象(对象也是回收的单位)


工作机制

1.识别出垃圾

判定哪些对象不再使用,哪些对象还在使用

在Java中的对象一定要通过引用的方式来使用,除非匿名对象。如果一个对象没有任何引用指向它,就可以认为无法被代码引用,就可以作为垃圾了

void func(){Test t = new Test();t.do();
}

这里通过new Test在堆上创建了对象,与此同时在栈上也存储下这个局部变量

当执行到 “}” 的时候,t这个局部变量在栈中自动销毁。上面的new Test()对象就没有引用指向它了。此时这个对象就成为了垃圾

如果代码复杂一点呢?

Test t1 = new Test();
Test t2 = t1;
t3 = t2;
t4 = t3;

此时会有很多引用指向new Test同一个对象,需要确保所有的引用都销毁了才能把Test对象视为垃圾。如果代码再复杂,每个引用的生命周期各不相同,那怎么办呢?

解决办法:

1)引用计数:给每个对象安排一个额外的空间,空间里要保存当前这个对象有几个引用

每次有一个引用指向这个对象,引用计数就+1,制空或者删除一个引用,引用计数就-1

此时有专门的扫描线程去获取当前每个对象的引用计数情况,如果发现对象的引用计数为0,说明这个对象可以被释放了

这个方法虽然没有在JVM中使用,但是广泛应用于其他语言的垃圾回收机制中,比如python和PHP

问题一:每个对象分配到的计数器消耗了额外的内存空间,对象数目一多空间资源容易不足

问题二:引用计数可能会产生“循环引用的问题”

此时两个对象,引用计数都不是0,不能被GC回收掉,但是这两个对象又无法使用 -- 类似于死锁


2)可达性分析(JVM用的是这个)

本质上用时间换空间。在写代码的时候会定义很多变量,就可以从这些变量作为起点,尝试进行遍历(沿着这些变量中持有的引用类型的成员,再进一步地往下进行访问),所有能被访问的对象就不是垃圾了,剩下的遍历一圈也访问不到的对象就是垃圾

虽然这个代码中只有一个root的引用,但是7个结点的对象都是可达的。JVM中存在扫描线程,会尽可能多的去遍历访问对象

如果root.right = null的话,a跟c之间就会断开,那么按照上述方法遍历的操作就无法访问到c和f了,此时c和f节点对象就不可达,不可达就变成垃圾了


2.把标记为垃圾的对象的内存空间进行释放

释放方式

1)标记 - 清除

把标记成垃圾的对象直接释放掉(一般不使用)

产生的问题:内存碎片 -- 小的但是离散的空闲内存空间

会导致后续的内存申请失败。因为我们的内存申请时一次性申请一个连续的空间,比如我们申请1M的内存空间,此时的1M字节都是连续的

如果有很多内存碎片就可能导致空闲空间总和超过1MB,但是没有比1MB大的连续空间,申请就会失败


2)复制算法

核心是不直接释放内存,而是把内存划分成为两半

把不是垃圾的对象复制到内存的另一半里,接下来就把左侧的空间(原来垃圾存在的空间)整体释放掉

比如我们要删掉对象2和4,我们会把不需要删除的1和3复制一份到右半边内存

然后把左半边全删掉

优点:规避内存碎片问题

缺点:1)总的可用内存变少;2)如果每次要复制的对象很多,复制的开销很大(所以这个算法适用情况:当前这轮GC中要删掉的对象很多,存活的对象很少)


3)标记 - 整理

类似顺序表删除中间的元素(搬运思想)

比如下面要删除1,3,6

接着把2,4,5,7,8往前搬运

优点:解决内存碎片问题,不需要过多浪费内存空间

缺点:复制开销很大


4)JVM采用的综合方案:分代回收(重点)

引入概念:对象的年龄(初始年龄为0)

JVM中有专门的线程负责周期性扫描或释放。一个对象如果被线程扫描了一次,发现是可达了,该对象的年龄+1

JVM会根据对象年龄的差异,把整个堆内存分成两个大的部分,分别为新生代(年龄小的对象)和老年代(年龄大的对象)

具体流程:复制算法+标记 - 整理

a)当代码中new处理一个新的对象,这个对象就被放在伊甸区

一个经验规律:大部分伊甸区的对象是朝生夕死的,活不过第一轮GC

b)第一轮GC扫描之后,少数幸存的对象就会通过复制算法拷贝到生存区,后续GC扫描线程继续扫描,生存区中大部分对象也会在扫描中被标记为垃圾,少数存活的会被拷贝到另一半的生存区中每经历一轮扫描,生存的对象年龄+1

c)如果这个对象在生存区中经过若干轮GC之后还存活着,JVM会认为这个对象的生命周期很长,就会将其从生存区拷贝到老年代

d)老年代的对象也要参与扫描,但是被扫描的频率大大降低

e)对象在老年代寄掉了,JVM就将其释放了

常使用的垃圾收集器:GMS, G1和ZGC

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821950.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RK3568 学习笔记 : 更改 u-boot spl 中的 emmc 的启动次序

环境 开发板: 【正点原子】 的 RK3568 开发板 ATK-DLRK3568 u-boot 版本:来自 【正点原子】 的 RK3568 开发板 Linux SDK,单独复制出来一份,手动编译 编译环境:VMware 虚拟机 ubuntu 20.04 问题描述 RK3568 默认 …

浅谈线程的生命周期

Java线程的生命周期是一个从创建到终止的过程,经历了多种状态的转变。在Java中,线程的生命周期可以划分为以下几个主要状态: 新建(New): 当使用 new Thread() 创建一个新的线程对象但尚未调用 start() 方法…

CSS基础之伪元素选择器(如果想知道CSS的伪元素选择器知识点,那么只看这一篇就足够了!)

前言:我们已经知道了在CSS中,选择器有基本选择器、复合选择器、伪类选择器、那么选择器学习完了吗?显然是没有的,这篇文章讲解最后一种选择器——伪元素选择器。 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨✨想要了解更多内容可以访问我…

【linux】mobaterm如何kill pycharm进程

【linux】mobaterm如何kill pycharm进程 【先赞后看养成习惯】求点赞关注收藏😀 使用云服务器时,pycharm在打开状态下,不小心关了mobaxterm,然后再输入pycharm.sh就会打不开pycharm,显示已经打开报错:Com…

软考131-上午题-【软件工程】-软件可靠性、可用性、可维护性

可靠性、可用性和可维护性是软件的质量属性,软件工程中,用 0-1 之间的数来度量。 0.66 66% 1、 可靠性 可靠性是指一个系统对于给定的时间间隔内、在给定条件下无失效运作的概率。 可以用 MTTF/ (1MTTF) 来度量,其中 MTTF 为平均无故障时间…

PHP一句话木马

一句话木马 PHP 的一句话木马是一种用于 Web 应用程序漏洞利用的代码片段。它通常是一小段 PHP 代码,能够在目标服务器上执行任意命令。一句话木马的工作原理是利用 Web 应用程序中的安全漏洞,将恶意代码注入到服务器端的 PHP 脚本中。一旦执行&#xf…

Docker Container (容器) 常见命令

Docker 容器的生命周期 什么是容器? 通俗地讲,容器是镜像的运行实体。镜像是静态的只读文件,而容器带有运行时需要的可写文件层,并且容器中的进程属于运行状态。即容器运行着真正的应用进程。容 器有初建、运行、停止、暂停和删除…

智能商品计划系统如何提升鞋服零售品牌的竞争力

国内鞋服零售企业经过多年的发展,已经形成了众多知名品牌,然而近年来一些企业频频受到库存问题的困扰,这一问题不仅影响了品牌商自身,也给长期合作的经销商带来了困扰。订货会制度在初期曾经有效地解决了盲目生产的问题&#xff0…

机器学习方法在测井解释上的应用-以岩性分类为例

机器学习在测井解释上的应用越来越广泛,主要用于提高油气勘探和开发的效率和精度。通过使用机器学习算法,可以从测井数据中自动识别地质特征,预测岩石物理性质,以及优化油气储层的评估和管理。 以下是机器学习在测井解释中的一些…

OpenHarmony南向开发实例:【游戏手柄】

介绍 基于TS扩展的声明式开发范式编程语言,以及OpenHarmony的分布式能力实现的一个手柄游戏。 完成本篇Codelab需要两台开发板,一台开发板作为游戏端,一台开发板作为手柄端,实现如下功能: 游戏端呈现飞机移动、发射…

Windows 安装 Node.js 开发环境

一、简介 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,主要功能是编写像 web 服务器一样的网络应用。它使用事件驱动、非阻塞式 I/O 模型,可以优化应用程序的传输量和规模,非常适合在分布式设备上运行数据密集型的实时应用。 …

【C++】适配器· 优先级队列 仿函数 反向迭代器

目录 适配器:适配器的应用:1. 优先级队列:仿函数:更深入的了解仿函数:一个关于不容易被注意的知识点: 2. 反向迭代器:(list为例) 适配器: 我们先来谈来一下容…

【网络编程】如何创建一个自己的并发服务器?

hello !大家好呀! 欢迎大家来到我的网络编程系列之如何创建一个自己的并发服务器,在这篇文章中,你将会学习到在Linux内核中如何创建一个自己的并发服务器,并且我会给出源码进行剖析,以及手绘UML图来帮助大家…

基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于HMM隐马尔可夫模型的金融数据预测算法.程序实现HMM模型的训练,使用训练后的模型进行预测。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运…

吃透2000-2024年600道真题和解析,科学高效通过2025年AMC8竞赛

为帮助孩子科学、有效备考AMC8竞赛,我整理了2000-2004年的全部AMC8真题(完整版共600道,且修正了官方发布的原试卷中的少量bug),并且独家制作成多种在线练习,利用碎片化时间,8个多月的时间足以通…

Django中的实时通信:WebSockets与异步视图的结合【第167篇—实时通信】

👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 在现代Web应用程序中,实时通信已经成为了必不可少的功能之一。无论是在线聊天、…

爆肝3k字!掌握Spring与Redis的高效交互:从Jedis到Spring Data Redis

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

Spring Boot 多环境配置:YML 文件的三种高效方法

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

Linux内核之WRITE_ONCE用法实例(四十八)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

单链表实现通讯录-三万字

声明 这一篇文章我会从单链表的概念,单链表的原理,一直到通讯录项目单链表的实现,再把单链表的专用题型系统的讲解一下(文章较长)。同时建议学习单链表之前可以学习一下顺序表,作为知识铺垫顺序表&#xf…