大创项目推荐 深度学习YOLOv5车辆颜色识别检测 - python opencv

文章目录

  • 1 前言
  • 2 实现效果
  • 3 CNN卷积神经网络
  • 4 Yolov5
  • 6 数据集处理及模型训练
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习YOLOv5车辆颜色识别检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 CNN卷积神经网络

卷积神经网络(CNN),是由多层卷积结构组成的一种神经网络。卷积结构可以减少网络的内存占用、参数和模型的过拟合。卷积神经网络是一种典型的深度学习算法。广泛应用于视觉处理和人工智能领域,特别是在图像识别和人脸识别领域。与完全连接的神经网络相比,CNN输入是通过交换参数和局部感知来提取图像特征的图像。卷积神经网络是由输入层、卷积层、池化层、全连接层和输出层五层结构组成。其具体模型如下图所示。
在这里插入图片描述

(1)输入层(Input
layer):输入层就是神经网络的输入端口,就是把输入传入的入口。通常传入的图像的R,G,B三个通道的数据。数据的输入一般是多维的矩阵向量,其中矩阵中的数值代表的是图像对应位置的像素点的值。

(2)卷积层(Convolution layer):卷积层在CNN中主要具有学习功能,它主要提取输入的数据的特征值。

(3)池化层(Pooling
layer):池化层通过对卷积层的特征值进行压缩来获得自己的特征值,减小特征值的矩阵的维度,减小网络计算量,加速收敛速度可以有效避免过拟合问题。

(4)全连接层(Full connected
layer):全连接层主要实现是把经过卷积层和池化层处理的数据进行集合在一起,形成一个或者多个的全连接层,该层在CNN的功能主要是实现高阶推理计算。

(5)输出层(Output layer):输出层在全连接层之后,是整个神经网络的输出端口即把处理分析后的数据进行输出。

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

4 Yolov5

简介

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

6 数据集处理及模型训练

数据集准备

由于目前汽车颜色图片并没有现成的数据集,我们使用Python爬虫利用关键字在互联网上获得的图片数据,编写程序爬了1w张,筛选后用于训练。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述
后续课查看其他标注教程,不难。

开始训练模型

处理好数据集和准备完yaml文件,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数
在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821879.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式学习55-ARM4(ADC和I²C)

1、什么是ADC,模拟量和数字量有什么特点? ADC: …

Ubuntu Vs code配置ROS开发环境

文章目录 1.开发环境2.集成开发环境搭建2.1 安装Ros2.2 安装 Vs code2.3 安装vs code 插件 3.Vs code 配置ROS3.1 创建ROS工作空间3.2 从文件夹启动Vs code3.3 使用Vscode 编译ROS 空间3.4 使用Vs code 创建功能包 4.编写简单Demo实例4.1编写代码4.2编译与执行 1.开发环境 系统…

【行为型模式】观察者模式

一、观察者模式概述​ 软件系统其实有点类似观察者模式,目的:一个对象的状态或行为的变化将导致其他对象的状态或行为也发生改变,他们之间将产生联动。 观察者模式属于对象行为型: 1.定义了对象之间一种一对多的依赖关系&#xff…

MyBatisPlus自定义SQL

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉🍎个人主页:Leo的博客💞当前专栏: 循序渐进学SpringBoot ✨特色专栏: MySQL学习 🥭本文内容:MyBatisPlus自定义SQL 📚个人知识库: Leo知识库,欢迎大家访问 目录 1.前言☕…

Kafka、RabbitMQ、Pulsar、RocketMQ基本原理和选型

Kafka、RabbitMQ、Pulsar、RocketMQ基本原理和选型 1. 消息队列1.1 消息队列使用场景1.2. 消息队列模式1.2.1 点对点模式,不可重复消费1.2.2 发布/订阅模式 2. 选型参考2.1. Kafka2.1.1 基本术语2.1.2. 系统框架2.1.3. Consumer Group2.1.4. 存储结构2.1.5. Rebalan…

Langchain入门到实战-第三弹

Langchain入门到实战 Langchain中RAG入门官网地址Langchain概述代码演示调用RAG功能更新计划 Langchain中RAG入门 Retrieval Augmented Generation 翻译成中文是“检索增强生成” 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息…

AB5 点击消除

原题链接:点击消除_牛客题霸_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 栈。 遍历字符串。如果栈为空或者当前字符与栈顶元素不等,就压栈。否则如果当前字符与堆顶元素相同,就出栈。 遍历完字符串…

SiLM5350系列带米勒钳位的单通道隔离驱动器 助力汽车与工业应用实现稳定与高效的解决方案

带米勒钳位的隔离驱动SiLM5350系列 单通道 30V,10A 带米勒钳位的隔离驱动 具有驱动电流更大、传输延时更低、抗干扰能力更强、封装体积更小等优势, 为提高电源转换效率、安全性和可靠性提供理想之选。 SiLM5350系列产品描述: SiLM5350系列是单通道隔离驱…

大数据平台搭建2024(三)

三:HBase安装 提前上传hbase安装包至虚拟机 1 上传、解压 tar -zxvf hbase-2.0.0-alpha2-bin.tar.gz -C /hadoop2 修改配置文件 在/hadoop/hbase-2.0.0-alpha2-bin/conf文件夹里 vi /hadoop/hbase-2.0.0-alpha2/conf/hbase-env.sh修改hbase-env.sh文件 export…

如何用JAVA如何实现Word、Excel、PPT在线前端预览编辑的功能?

背景 随着信息化的发展,在线办公也日益成为了企业办公和个人学习不可或缺的一部分,作为微软Office的三大组成部分:Word、Excel和PPT也广泛应用于各种在线办公场景,但是由于浏览器限制及微软Office的不开源等特性,导致…

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之十二 简单人脸识别

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之十二 简单人脸识别 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之十二 简单人脸识别 一、简单介绍 二、简单人脸识别实现原理 三、简单人脸识别案例实现简…

数据密集型应用系统设计 PDF 电子书(Martin Kleppmann 著)

简介 《数据密集型应用系统设计》全书分为三大部分: 第一部分,主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇第 1 章即瞄准目标:可靠性、可扩展性与可维护性,如何认识这些问题以及如何达成目标。第 2 章我们比…

MongoDB的安装配置及使用

文章目录 前言一、MongoDB的下载、安装、配置二、检验MongoDB是否安装成功三、Navicat 操作MongoDB四、创建一个集合,存放三个文档总结 前言 本文内容: 💫 MongoDB的下载、安装、配置 💫 检验MongoDB是否安装成功 ❤️ Navicat 操…

【单例模式】饿汉式、懒汉式、静态内部类--简单例子

单例模式是⼀个单例类在任何情况下都只存在⼀个实例,构造⽅法必须是私有的、由⾃⼰创建⼀个静态变量存储实例,对外提供⼀个静态公有⽅法获取实例。 目录 一、单例模式 饿汉式 静态内部类 懒汉式 反射可以破坏单例 道高一尺魔高一丈 枚举 一、单例…

[html]一个动态js倒计时小组件

先看效果 代码 <style>.alert-sec-circle {stroke-dasharray: 735;transition: stroke-dashoffset 1s linear;} </style><div style"width: 110px; height: 110px; float: left;"><svg style"width:110px;height:110px;"><cir…

【GD32】_时钟架构及系统时钟频率配置

文章目录 一、有关时钟源二、系统时钟架构三、时钟树分析四、修改参数步骤1、设置外部晶振2、选择外部时钟源。3、 设置系统主频率大小4、修改PLL分频倍频系数 学习系统时钟架构和时钟树&#xff0c;验证及学习笔记如下&#xff0c;如有错误&#xff0c;欢迎指正。主要记录了总…

力扣152. 乘积最大子数组

Problem: 152. 乘积最大子数组 文章目录 题目描述思路复杂度Code 题目描述 思路 1.初始化&#xff1a;首先&#xff0c;我们创建两个数组maxNum和minNum&#xff0c;并将它们初始化为输入数组nums。这两个数组用于存储到当前位置的最大和最小乘积。我们还需要一个变量maxProduc…

python 一个点运算符操作的字典库:DottedDict

DottedDict 是一种特殊的数据结构&#xff0c;它结合了字典&#xff08;Dictionary&#xff09;和点符号&#xff08;Dot Notation&#xff09;访问的优点&#xff0c;为用户提供了一种更加直观和方便的方式来处理和访问嵌套的数据。在这篇文章中&#xff0c;我们将深入探讨 Do…

Java复习第二十天学习笔记(过滤器Filter),附有道云笔记链接

【有道云笔记】二十 4.8 过滤器Filter https://note.youdao.com/s/dSofip3f 一、为什么要使用过滤器 项目开发中&#xff0c;经常会用到重复代码的实现。 1、请求每个servlet都要设置编码 2、判断用户是否登录&#xff0c;只有登录了才有操作权限。 二、过滤器相关Api int…

从汇编代码理解数组越界访问漏洞

数组越界访问漏洞是 C/C 语言中常见的缺陷&#xff0c;它发生在程序尝试访问数组元素时未正确验证索引是否在有效范围内。通常情况下&#xff0c;数组的索引从0开始&#xff0c;到数组长度减1结束。如果程序尝试访问小于0或大于等于数组长度的索引位置&#xff0c;就会导致数组…