计算机网络:MAC地址 IP地址 ARP协议

计算机网络:MAC地址 & IP地址 & ARP协议

    • MAC地址
    • IP地址
    • ARP协议


MAC地址

如果两台主机通过一条链路通信,它们不需要使用地址就可以通信,因为连接在信道上的主机只有他们两个。换句话说,使用点对点信道的数据链路层不需要使用地址

再来看使用共享信道的总线型局域网:

在这里插入图片描述

总线上的某台主机要给另一台主机发送帧,表示帧的信号通过总线会传送到总线上的其他所有主机,那么这些主机如何判断该帧是否是发送给自己的呢?

很显然,使用广播信道的数据链路层必须使用地址来区分各主机,也就是说,当多个主机连接在同一个广播信道上,要想实现两个主机之间的通信,则每个主机都必须有一个唯一的标识,即一个数据链路层地址。

如图所示,假设总线上各主机的地址分别用一个不同的大写字母来表示:

在这里插入图片描述

在每个主机发送的帧中必须携带标识发送主机和接收主机的地址。由于这类地址是用于媒体接入控制(Media Access Control)的,其英文缩写词为 MAC,因此这类地址被称为 MAC地址。

如图所示,这是主机 C 要发送给主机D的帧:

在这里插入图片描述

帧首部中的目的地址字段应填入主机 D 的 MAC地址。在源地址字段应填入主机 C 自己的 MAC地址,这样总线上其他各主机收到该帧后,就可以根据帧手部中的目的地址字段的值是否与自己的 MAC地址匹配,进而丢弃或接受该帧:

在这里插入图片描述

MAC地址一般被固化在网卡中,因此 MAC地址也被称为硬件地址。但这并不意味着 MAC地址属于网络体系结构中的物理层,而是属于数据链路层的范畴。

一般情况下,用户主机会包含两个网络适配器,一个是有线局域网适配器,也就是有线网卡。另一个是无线局域网适配器,也就是无线网卡。每个网络适配器都有一个全球唯一的 MAC地址,而交换机和路由器往往拥有更多的网络接口,所以就会拥有更多的 MAC地址。

综上所述,严格来说, MAC地址是对网络上各接口的唯一标识,而不是对网络上各设备的唯一标识

接下来我们介绍 IEEE 802 局域网的 MAC地址格式:

在这里插入图片描述

它由 48 个比特构成,从左至右依次为第1字节到第6字节

前三个字节是组织唯一标识符 OUI,生产网络设备的厂商需要向管理机构申请一个或多个OUI。

后三个字节是网络接口标识符 EUI ,获得 OUI 的厂商可自行随意分配。

MAC地址的标准表示方法是将每 4 个比特写成一个十六进制的字符,共 12 个字符,将每两个字符分为一组,共 6 组,组间用短线连接。

例如Windows 系统中,MAC地址表示为00-0C-CF-93-8C-92

也可以将短线更改为冒号。例如Linux 系统、苹果系统、安卓系统中,MAC地址表示为00:0C:CF:93:8C:92

在这里插入图片描述

MAC地址第一字节的 b0 位取 0 时,表示该地址是单播地址,取 1 时表示该地址是多播地址。

MAC地址第一字节的 b0 位取 0 时,表示该地址是全球管理的,也就是全球唯一的。取 1 时,表示该地址是本地管理的。

需要注意的是,当MAC地址的比特位全部为 1,就是广播地址。

下面我们来举例说明单播 MAC地址的作用。

假设这是一个拥有三台主机的总线型以太网,各主机网卡上固化的全球单播 MAC地址如图所示:

在这里插入图片描述

假设主机 B 要给主机 C 发送单播帧,主机 B 首先要构建该单播帧。在帧首部中的目的地址字段填入主机 C 的 MAC地址,源地址字段填入自己的 MAC地址,再加上帧中的其他字段,就构成了该单播帧。

主机 B 将该单波针发送出去,主机 A 和 C 都会收到该单播帧:

在这里插入图片描述

主机 A 的网卡发现该单播帧的目的 MAC 地址与自己的 MAC地址不匹配,于是丢弃该帧。
主机 C 的网卡发现该单播帧的目的 MAC地址与自己的 MAC 地址匹配,于是接受该帧并将该帧交给其上层处理。

再来看广播 MAC地址的作用:

在这里插入图片描述

假设主机 B 要发送一个广播帧,主机 B 首先要构建该广播帧在帧首部中的目的地址,广播地址是 16 进制的全 F。 源地址字段填入自己的 MAC 地址,再加上帧首部中的其他字段就构成了该广播帧。

主机 B 将该广播帧发送出去:

在这里插入图片描述

主机 A 和 C 都会收到该广播帧,发现该帧首部中的目的地址是广播地址,就知道该帧是广播帧,接受该帧并将该帧交给上层处理

再来看多播 MAC地址的作用:

在这里插入图片描述

假设主机 A 要发送多播帧给该多播地址07-E0-12-F6-2A-D8。主机 A 首先要构建该多播帧在帧首部中的目的地址字段填入该多波地址,源地址字段填入自己的 MAC地址。再加上其他字段,就构成了该多播帧。

主机 a 将该多拨帧发送出去:

在这里插入图片描述

主机 B 和 C 发现该多播帧的目的 MAC 地址在自己的多播组列表中,因此主机 B 和 C 都会接受该帧并送交上层处理,而主机 D 发现该多波帧的目的 MAC地址不在自己的多播组列表中。主机 D 丢弃该多播帧。


IP地址

IP 地址属于网络层的范畴,而非数据链路层的范畴。属于数据链路层的 MAC 地址和属于网络层的 IP 地址,它们之间存在一定的关系。

IP 地址是因特网上的主机和路由器所使用的地址,用于标识两部分信息:

  • 网络编号:用来标识因特网上数以百万的网络
  • 主机编号:用来标识同一网络上不同主机或路由器各接口

假设这是因特网的一部分:
在这里插入图片描述

我们给网络 N8 上的两台主机各分配了一个 IP 地址,给路由器 R4 连接该网络的接口也分配了一个 IP 地址。这三个 IP 地址的前三个数192.168.0是相同的,也就是网络 N8 的编号,而最后一个十进制数各不相同,是网络 N8 上各主机和路由器接口的编号。

换句话说,同一个网络上的各主机和路由器的各接口的 IP 地址的网络号部分应该相同,而主机号部分应该互不相同

N9 上的各主机和路由器的接口各分配了一个 IP 地址,这三个 IP 地址的前三个数192.168.1是相同的,也就是网络 N9 的编号,而最后一个数各不相同,是网络 N9 上各主机和路由器接口的编号。

因特网中不同网络的网络编号必须各不相同。例如,在本例中,网络 N8 的编号为192.168.0,而网络 N9 的编号为192.168.1

接下来我们来看看数据包在转发过程中 IP 地址与 MAC地址的变化情况,如图所示:

在这里插入图片描述

假设主机 H1 要给主机 H2 发送一个数据包,我们从网络体系结构的角度来看,数据包在传输过程中 IP 地址与 MAC地址的变化情况。

需要注意的是,主机中有完整的网络体系结构,而路由器的最高层为网络层,它没有网络体系结构中的运输层和应用层

主机H1处理过程:

网络层封装的 IP 数据报首部中,源 IP 地址应填写主机 H1 的 IP 地址 IP1,目的 IP 地址应填写主机 H2 的 IP 地址IP2,也就是从 IP1 发送给IP2

而在数据链路层封装的帧首部中,源 MAC地址应填写主机 H1 的 MAC地址MAC1,目的 MAC地址应填写路由器 R1 的 MAC地址 MAC3,也就是从MAC1发送给MAC3

路由器R1处理过程:

网络层封装的 IP 数据报,源 IP 地址仍然填写主机 H1 的 IP 地址IP1,目的 IP 地址仍然填写主机 H2 的 IP 地址IP2,也就是从 IP1 发送给IP2

而在数据链路层封装的帧首部中,源 MAC地址应填写路由器 R1 的 MAC地址 MAC4, 目的 MAC地址应填写路由器 R2 的 MAC地址 MAC5,也就是从 MAC4 发送给 MAC5

路由器R2处理过程:

网络层封装的 IP 数据报,源 IP 地址仍然填写主机 H1 的 IP 地址IP1,目的 IP 地址仍然填写主机 H2 的 IP 地址IP2,也就是从 IP1 发送给IP2

而在数据链路层封装的帧首部中,源 MAC地址应填写路由器 R2 的 MAC地址 MAC6, 目的 MAC地址应填写主机 H2 的 MAC地址 MAC2,也就是从 MAC6 发送给 MAC2

通过本例可以看出,在数据包转发过程中,源 IP 地址和目的 IP 地址始终保持不变,而源 MAC地址和目的 MAC地址逐个链路或逐个网络改变

对于本例主机 H1 ,路由器 R1R2 都存在一个共同的问题,那就是只知道目的 IP 地址,但不知道其相应的 MAC地址。如何通过 IP 地址找出其对应的 MAC地址,这是协议 ARP 所要实现的功能。


ARP协议

刚刚我们提出了这样一个问题,那就是如何通过 IP 地址找到其相应的 MAC地址。这就是地址解析协议 ARP 所要实现的主要功能。下面我们就来举例说明 ARP 协议的工作原理。

这是一个共享总线型的以太网,假设主机 B 要给主机 C 发送数据报:

在这里插入图片描述

主机 B 知道主机 C 的 IP 地址,但不知道他的 MAC地址。因此主机 B 的数据链路层在封装 MAC帧时就无法填写目的 MAC地址字段,进而也就无法构建出要发送的 MAC帧。

实际上,每台主机都会有一个 ARP 高速缓存表,ARP 高速缓存表中记录有 IP 地址和 MAC地址的对应关系

当主机 B 要给主机 C 发送数据报时,会首先在自己的 ARP 高速缓存表中查找主机 C 的 IP 地址所对应的 MAC地址,但未找到:

在这里插入图片描述

因此主机 B 需要发送ARP 请求报文来获取主机 C 的 MAC地址。

ARP请求报文的内容是:

我的 i p 地址为192.168.0.2,我的 MAC地址为 00-E0-F9-A3-43-77。我想知道 IP 地址为 192.168.0.3 的主机的 MAC地址。

需要说明的是,为了简单起见,这里我们以比较通俗的语言来描述 ARP 请求报文的内容,但实际上请求报文有其具体的格式。

ARP请求报文被封装在MAC帧中,发送目的地址为广播地址

主机 B 发送封装有 ARP 请求报文的广播帧,总线上的其他主机都能收到该广播帧。

在这里插入图片描述

  • 主机 A 的网卡收到该广播帧后,将其送交上层处理。上层的 ARP 进程解析ARP 请求报文,发现所询问的 IP 地址不是自己的 IP 地址,因此不予理会。

  • 主机 C 的网卡收到该广播帧后,将其送交上层处理。上层的 ARP 进程解析 ARP 请求报文,发现所询问的 IP 地址正是自己的 IP 地址,需要进行响应。

主机 C 首先将 ARP 请求报文中所携带的主机 B 的 IP 地址与 MAC地址记录到自己的 ARP 高速缓存表中。然后给主机 发送 ARP 响应报文,以告知自己的 MAC地址。

ARP响应报文的内容是:

我的 IP 地址是192.168.0.3,我的 MAC地址为 00-0C-CF-B8-4A-82

需要注意的是, ARP响应报文被封装在 MAC帧中,发送目的地址为主机 B 的 MAC地址。主机 C 给主机 B 发送封装有 ARP 响应报文的单播帧。

在这里插入图片描述

  • 主机 A 的网卡收到该单播帧后,发现其目的 MAC地址与自己的 MAC地址不匹配,直接丢弃该帧。
  • 主机 B 的网卡收到该单播帧后,发现其目的 MAC地址就是自己的 MAC地址,将其交付上层处理。上层的 ARP 进程解析 ARP 响应报文,将其所包含的主机 C 的 IP 地址与 MAC 地址记录到自己的 ARP 高速缓存表中。

在这里插入图片描述

主机 B 现在可以给主机 C 发送之前想发送的数据包了。

ARP 高速缓存表中的每一条记录都有其类型,分为动态和静态两种。

  • 动态类型:记录是主机自动获取到的,其生命周期默认为 2 分钟。当生命周期结束时,该记录将自动删除。这样做的原因是 IP 地址与 MAC地址的对应关系并不是永久性的。例如,当主机的网卡坏了,更换新的网卡后,主机的 IP 地址并没有改变,但主机的 MAC地址改变了。

  • 静态类型:记录是用户或网络维护人员手工配置的,不同操作系统下的生命周期不同。例如系统重启后不存在,或在系统重启后依然有效。

ARP 协议只能在一段链路或一个网络上使用,而不能跨网络使用


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821785.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源 Ruo-Yi 项目引入 Mybatis-Plus:3.5.3 报错ClassNotFoundException:

开源 Ruo-Yi 项目引入 Mybatis-Plus:3.5.3 报错ClassNotFoundException: Caused by: java.lang.ClassNotFoundException: com.baomidou.mybatisplus.extension.plugins.MybatisPlusInter1 分析问题 控制台报错说明我们引入的 mybatis-plus 的依赖里找不到com.baom…

数字化转型-工具变量数据集

01、数据介绍 数字化转型是指企业或个人利用数字技术,如大数据、云计算、人工智能等,对其业务流程、运营模式、决策方式等进行全面、深入的变革,以提高效率、降低成本、提升质量、增强竞争力。在这个过程中,工具变量扮演着至关重…

JVM虚拟机(九)如何开启 GC 日志

目录 一、引言二、开启 GC 日志三、解析 GC 日志四、优化建议 一、引言 在 Java 应用程序的运行过程中,垃圾收集(Garbage Collection,简称 GC)是一个非常重要的环节。GC 负责自动管理内存,回收不再使用的对象所占用的…

zabbix 自动发现与自动注册 部署 zabbix 代理服务器

zabbix 自动发现(对于 agent2 是被动模式) zabbix server 主动的去发现所有的客户端,然后将客户端的信息登记在服务端上。 缺点是如果定义的网段中的主机数量多,zabbix server 登记耗时较久,且压力会较大。1.确保客户端…

一次配置Docker环境的完整记录

一次配置Docker环境的完整记录 Docker环境搭建报错与解决报错一报错二报错三 Docker环境搭建 本节介绍了一次配置docker环境的完整记录: 编写Dockerfile文件: FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-develRUN rm /etc/apt/sources.list.d/cuda.l…

mfc 带有复选框的ListBox

mfc 带有复选框的 ListBox 效果: 添加 ListBox 控件 从工具箱拖拽 ListBox 控件到窗口上,并设置属性: 包含字符串:true所有者描述:Fixed 给ListBox添加控制变量 添加完后,将m_list_box的类型使用CC…

Qt+vstudio2022的报错信息积累

从今天开始记录一下平常开发工作中的报错记录,后续有错误动态补充! 报错信息:【MSB8041】此项目需要 MFC 库。从 Visual Studio 安装程序(单个组件选项卡)为正在使用的任何工具集和体系结构安装它们。 解决: 背景:换…

uniapp--登录和注册页面-- login

目录 1.效果展示 2.源代码展示 测试登录 login.js 测试请求 request.js 测试首页index.js 1.效果展示 2.源代码展示 <template><view><f-navbar title"登录" navbarType"4"></f-navbar><view class"tips"><…

图数据库Neo4J入门——Neo4J下载安装+Cypher基本操作+《西游记》人物关系图实例

这里写目录标题 一、效果图二、环境准备三、数据库设计3.1 人物节点设计3.2 关系设计 四、操作步骤4.1 下载、安装、启动Neo4J服务4.1.1 配置Neo4J环境变量4.1.2 启动Neo4J服务器4.1.3 启动Ne04J客户端 4.2 创建节点4.3 创建关系&#xff08;从已有节点创建关系&#xff09;4.4…

PhpStorm2024安装包(亲测可用)

目录 一、软件简介 二、软件下载 一、软件简介 PhpStorm是由JetBrains公司开发的一款商业的PHP集成开发环境&#xff08;IDE&#xff09;&#xff0c;深受全球开发人员的喜爱。它旨在提高开发效率&#xff0c;通过深刻理解用户的编码习惯&#xff0c;提供智能代码补全、快速导…

Java面试八股文(JVM篇)(❤❤)

Java面试八股文_JVM篇 1、知识点汇总2、知识点详解&#xff1a;3、说说类加载与卸载11、说说Java对象创建过程12、知道类的生命周期吗&#xff1f;14、如何判断对象可以被回收&#xff1f;17、调优命令有哪些&#xff1f;18、常见调优工具有哪些20、你知道哪些JVM性能调优参数&…

vue的就地更新与v-for的key属性

vue的就地更新 Vue中的就地更新到底是怎么回事&#xff0c;为什么会存在就地更新的现象&#xff1f; 注意下面的例子&#xff0c;使用v-for指令时&#xff0c;没有绑定key值&#xff0c;才有就地更新的现象&#xff0c;因为Vue默认按照就地更新的策略来更新v-for渲染的元素列表…

CTFHUB-技能树-Web前置技能-文件上传(前端验证—MIME绕过、00截断、00截断-双写后缀)

CTFHUB-技能树-Web前置技能-文件上传&#xff08;前端验证—MIME绕过、00截断、00截断-双写后缀&#xff09; 文章目录 CTFHUB-技能树-Web前置技能-文件上传&#xff08;前端验证—MIME绕过、00截断、00截断-双写后缀&#xff09;前端验证—MIME绕过有关MIMEMIME的作用 解题时有…

元宇宙VR虚拟线上展馆满足企业快速布展的需要

想要拥有一个VR线上虚拟展馆&#xff0c;展现您的城市风采或企业特色吗? 相比实体展馆搭建&#xff0c;VR线上虚拟展馆投入资金少&#xff0c;回报周期短&#xff0c;只需几个月的时间&#xff0c;您就能开始资金回笼。那么一个VR线上虚拟展馆多少钱呢? 深圳VR公司华锐视点基…

bp神经网络拟合函数未知参数【源码+视频教程】

专栏导读 作者简介&#xff1a;工学博士&#xff0c;高级工程师&#xff0c;专注于工业软件算法研究本文已收录于专栏&#xff1a;《复杂函数拟合案例分享》本专栏旨在提供 1.以案例的形式讲解各类复杂函数拟合的程序实现方法&#xff0c;并提供所有案例完整源码&#xff1b;2.…

无人零售行业展望:智能化与便利性引领未来

无人零售行业展望&#xff1a;智能化与便利性引领未来 无人零售&#xff0c;这一依靠智能化技术如人工智能、物联网、和大数据的零售模式&#xff0c;正逐步成为全球零售行业的新趋势。该模式允许消费者在没有店员的情况下自助完成购物&#xff0c;提供了24小时服务&#xff0…

IO、存储、硬盘、文件系统相关常识

目录 IO 文件系统 文件在硬盘上的存储 IO IO&#xff0c;就是Input和Output&#xff0c;即输入和输出操作。我们的电脑可以通过网络下载文件&#xff0c;也可以通过网络上传文件。通过网络下载文件就是输入操作&#xff0c;上传文件就是输出。如何区分输入和输出呢&#xf…

负载均衡的原理及算法简介

负载均衡&#xff08;Load Balancing&#xff09;是一种用于在多台服务器之间分配网络流量的技术&#xff0c;旨在优化系统资源利用率、提高服务可用性、增强系统的伸缩性和容错能力。其基本原理是将来自客户端的请求分散到一个服务器集群中的各个服务器上&#xff0c;而不是让…

postgresql|数据库|实时数据库监控利器 pg_activity 的部署和初步使用

前言&#xff1a; postgresql的调优是比较重要的&#xff0c;那么&#xff0c;如何调优呢&#xff1f;自然是在某一个时间段内&#xff0c;通常是业务高峰期或者压测时间内实时观察数据库的运行情况&#xff0c;然后通过观察到的信息判断数据库的瓶颈&#xff0c;比如&#xf…

通过adb 命令打印安装在第三方模拟器上的log

1&#xff0c;环境&#xff1a;Windows 11 &#xff0c;第三方模拟器 网易的MuMu 步骤&#xff1a; 1&#xff0c;打开cmd&#xff0c;输入 adb connect 172.0.0.1:7555 2&#xff0c;在cmd&#xff0c;再次输入adb logcat 回车