【机器学习】深入解析机器学习基础

在本篇深入探讨中,我们将揭开机器学习背后的基础原理,这不仅包括其数学框架,更涵盖了从实际应用到理论探索的全方位视角。机器学习作为数据科学的重要分支,其力量来源于算法的能力,这些算法能够从数据中学习并做出预测或决策。下面,我们将根据提供的目录详细探讨每个部分。

学习算法

任务

机器学习任务是定义模型需要解决的具体问题,它们可以广泛分为几类,包括分类、回归、聚类等。分类任务要求模型从预定的标签集合中选择一个标签,例如判断一封电子邮件是否为垃圾邮件;回归任务则要求模型预测一个连续的数值,如预测房屋价格;聚类任务涉及将数据分组到未知的类别中,这通常用于探索性数据分析。

评价指标

评价指标用于量化模型性能,不同的任务会有不同的指标。对于分类任务,常见的评价指标包括准确率、精确度、召回率和F1分数;回归任务则可能使用均方误差(MSE)、均方根误差(RMSE)或绝对平均误差(MAE);聚类效果的评估可能会用到轮廓系数等。

经验

经验指的是模型通过训练过程从数据中获得的知识。这通常通过设计一个损失函数来实现,损失函数衡量了模型预测与实际值之间的差异,通过最小化损失函数,模型能够从错误中学习并不断改进。

容量、过拟合和欠拟合

  • 容量描述了模型学习复杂结构的能力。模型容量过低可能导致欠拟合,即模型无法捕捉数据中的关键结构;而容量过高则可能导致过拟合,即模型过于关注训练数据中的随机噪声。
  • 过拟合是机器学习中常见的问题,表现为模型在训练集上表现出色,但在新的、未见过的数据上表现不佳。
  • 欠拟合则发生在模型过于简单,无法捕捉到数据中的全部信息时。

超参数和验证集

  • 超参数是在学习开始之前设置的参数,与模型参数不同,它们不是通过训练数据学习得到的。超参数包括学习率、正则化项的强度、神经网络中的层数和每层的神经元数量等。
  • 验证集用于模型训练过程中的性能评估,帮助我们调整超参数,而不是直接在测试集上进行,这样可以防止信息泄露并提高模型在未知数据上的泛化能力。

最大似然估计

最大似然估计(MLE)是一种估计模型参数的方法,它选择参数值使得观察到的数据在该模型下出现的概率最大。在许多情况下,MLE为我们提供了一种强大的框架,用于从数据中学习模型参数。

随机梯度下降

随机梯度下降(SGD)是一种优化算法,用于最小化模型的损失函数。与传统的梯度下降相比,SGD每次更新参数时只使用一个样本或一小批样本。这种方法使得SGD更适合于大规模数据集,它可以显著加快训练过程并减少计算资源的消耗。

通过深入理解这些机器学习的基础概念,我们不仅能够构建更有效的模型,还能够更好地理解这些模型是如何从数据中学习的。这些知识为我们进一步探索更高级的机器学习技术和算法提供了坚实的基础。

参考书:Deep Learning (deeplearningbook.org)

  • 网站: Deep Learning - 提供深度学习相关的最新研究、教程和案例研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/802452.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS下部署ftp服务

要在linux部署ftp服务首先需要安装vsftpd服务 yum install vsftpd -y 安装完成后需要启动vsftpd服务 systemctl start vsftpd 为了能够访问ftp的端口,需要在防火墙中开启ftp的端口21,否则在使用ftp连接的时候会报错No route to host. 执行如下命令为f…

纯纯python实现梯度下降、随机梯度下降

最近面试有要求手撕SGD,这里顺便就把梯度下降、随机梯度下降、批次梯度下降给写出来了 有几个注意点: 1.求梯度时注意label[i]和pred[i]不要搞反,否则会导致模型发散 2.如果跑了几千个epoch,还是没有收敛,可能是学习率…

基于逻辑回归和支持向量机的前馈网络进行乳腺癌组织病理学图像分类

CNN(卷积神经网络)通过使用反向传播方法来学习特征,这种方法需要大量的训练数据,并且存在梯度消失问题,从而恶化了特征学习。 CNN卷积神经网络 CNN由一个多层神经网络组成,该网络从标记的训练数据集中学习…

HarmonyOS实战开发-使用OpenGL实现2D图形绘制和动画。

介绍 基于XComponent组件调用Native API来创建EGL/GLES环境,从而使用标准OpenGL ES进行图形渲染。本项目实现了两个示例: 使用OpenGL实现2D的图形绘制和动画;使用OpenGL实现了在主页面绘制两个立方体,光源可以在当前场景中移动&…

从高频到低频:全面解析压控振荡器结构与应用场景

压控振荡器(简称VCO)是一种电子电路,其特点是输出的振荡频率能够随着输入电压的变化而连续改变。在VCO中,通过调控输入端的电压信号,可以相应地改变内部谐振电路的参数(如电感、电容或者变容二极管的电容值…

【智能算法】人工电场算法(AEFA)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2019年,A Yadav等人受库伦定律和运动定律启发,提出了人工电场算法(Artificial Electric Field Algorithm,AEFA)。 2.算法原理 2.1算法思…

【Spring Cloud】服务容错中间件Sentinel入门

文章目录 什么是 SentinelSentinel 具有以下特征:Sentinel分为两个部分: 安装 Sentinel 控制台下载jar包,解压到文件夹启动控制台访问了解控制台的使用原理 微服务集成 Sentinel添加依赖增加配置测试用例编写启动程序 实现接口限流总结 欢迎来到阿Q社区 …

HTML转EXE工具(HTML App Build)永久免费版:24.4.9.0

最新版本的HTML2EXE即将发布了。自从去年发布了HTML2EXE之后,我就正式上班了,一直忙于工作,实在没有时间更新(上班时间不能做),很多网友下载使用,反应很好,提出了一些改进的建议&…

感知定位篇之机器人感知定位元件概述(上)

欢迎关注微信公众号 “四足机器人研习社”,本公众号的文章和资料和四足机器人相关,包括行业的经典教材、行业资料手册,同时会涉及到职业知识学习及思考、行业发展、学习方法等一些方面的文章。 目录 |0.概述 |1.常用传感元件 1.1视觉传感器…

750万人受影响,印度电子巨头boAt重大数据泄露事件

近日,印度消费电子巨头boAt遭遇重大数据泄露事件,超过750万客户的个人数据遭到泄露,泄露的个人数据包括姓名、地址、联系电话、电子邮件 ID 和客户 ID 以及其他敏感信息,目前这些泄露数据正在暗网上流传。 boAt Lifestyle数据库被…

【数据结构】考研真题攻克与重点知识点剖析 - 第 8 篇:排序

前言 本文基础知识部分来自于b站:分享笔记的好人儿的思维导图与王道考研课程,感谢大佬的开源精神,习题来自老师划的重点以及考研真题。此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析,本人技术…

Android 包命名规范

Android包目录的命名规范会直接影响到整个APP攻城后期的开发效率和拓展性。 常用两种命名方式:PBL(package by layer ) 和PBF(pakcage by Feature) layer 英/ˈleɪə(r)/ 翻译:层 feature 英/ˈfiːtʃə(r)/ 翻译:特色 1 Pac…

【吊打面试官系列】Java高并发篇 - 在 Java 中 Executor 和 Executors 的区别?

大家好,我是锋哥。今天分享关于 【在 Java 中 Executor 和 Executors 的区别?】面试题,希望对大家有帮助; 在 Java 中 Executor 和 Executors 的区别? Executors 工具类的不同方法按照我们的需求创建了不同的线程池&am…

探索未来的旋律:AI生成音乐的魔法(附GPT镜像站大全)

在数字化时代的浪潮中,人工智能(AI)已经触及了我们生活的方方面面,从自动驾驶汽车到智能家居系统,再到高度个性化的推荐算法。然而,AI的魔法并不止步于此。近年来,AI在艺术和创造性领域的应用也…

#Arduino(代码记录)

设备:esp32c3 IDE:Arduino 实验: (1)获取网络时间,b站粉丝数和b站关注数,心知天气 #include "HTTPClient.h" #include "WiFi.h" #include "ArduinoJson.h" char *ssid &qu…

【保姆级讲解PyCharm安装教程】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

硬盘删除的文件怎么恢复?恢复方法大公开!

“硬盘删除的文件还有机会恢复吗?刚刚清理电脑垃圾的时候不小心删除了很多重要的文件,有什么方法可以有效恢复这些文件吗?” 在数据时代,我们会将很多重要的文件都保存在电脑上,如果我们清理了电脑上的文件&#xff0c…

基于分布式鲁棒性的多微网电氢混合储能容量优化配置——1

Optimal configuration of multi microgrid electric hydrogen hybrid energy storage capacity based on distributed robustness A B S T R A C T 储能与微电网相结合是解决分布式风能、太阳能资源不确定性、降低其对大电网安全稳定影响的重要技术路径。随着分布式风电和太阳…

Git分布式版本控制系统——Git常用命令(一)

一、获取Git仓库--在本地初始化仓库 执行步骤如下: 1.在任意目录下创建一个空目录(例如GitRepos)作为我们的本地仓库 2.进入这个目录中,点击右键打开Git bash窗口 3.执行命令git init 如果在当前目录中看到.git文件夹&#x…

node后端上传文件到本地指定文件夹

实现 第一步,引入依赖 const fs require(fs) const multer require(multer) 第二步,先设置一个上传守卫,用于初步拦截异常请求 /*** 上传守卫* param req* param res* param next*/ function uploadFile (req, res, next) {// dest 值…