C刊级 | Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
目录
- C刊级 | Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
 
 
效果一览

 
 

 
 
基本介绍
1.Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计
- 完整源码和数据获取方式私信博主回复Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测。
%%  清空环境变量
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
warning off             % 关闭报警信息
%% 导入数据
res = xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
enddisp('程序运行时间较长,需迭代popsize*maxgen次!可自行调整运行参数')function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)%%  优化算法初始化
Alpha_pos = zeros(1, dim);  % 初始化Alpha狼的位置
Alpha_score = inf;          % 初始化Alpha狼的目标函数值,将其更改为-inf以解决最大化问题Beta_pos = zeros(1, dim);   % 初始化Beta狼的位置
Beta_score = inf;           % 初始化Beta狼的目标函数值 ,将其更改为-inf以解决最大化问题Delta_pos = zeros(1, dim);  % 初始化Delta狼的位置
Delta_score = inf;          % 初始化Delta狼的目标函数值,将其更改为-inf以解决最大化问题%%  初始化搜索狼群的位置
Positions = initialization(SearchAgents_no, dim, ub, lb);%%  用于记录迭代曲线
Convergence_curve = zeros(1, Max_iteration);
%%  循环计数器
iter = 0;%%  优化算法主循环
while iter < Max_iteration           % 对迭代次数循环for i = 1 : size(Positions, 1)   % 遍历每个狼% 返回超出搜索空间边界的搜索狼群% 若搜索位置超过了搜索空间,需要重新回到搜索空间Flag4ub = Positions(i, :) > ub;Flag4lb = Positions(i, :) < lb;% 若狼的位置在最大值和最小值之间,则位置不需要调整,若超出最大值,最回到最大值边界% 若超出最小值,最回答最小值边界Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;   % 计算适应度函数值
%         Positions(i, 2) = round(Positions(i, 2));
%         fitness = fical(Positions(i, :));fitness = fobj(Positions(i, :));% 更新 Alpha, Beta, Deltaif fitness < Alpha_score           % 如果目标函数值小于Alpha狼的目标函数值Alpha_score = fitness;         % 则将Alpha狼的目标函数值更新为最优目标函数值Alpha_pos = Positions(i, :);   % 同时将Alpha狼的位置更新为最优位置endif fitness > Alpha_score && fitness < Beta_score   % 如果目标函数值介于于Alpha狼和Beta狼的目标函数值之间Beta_score = fitness;                          % 则将Beta狼的目标函数值更新为最优目标函数值Beta_pos = Positions(i, :);                    % 同时更新Beta狼的位置endif fitness > Alpha_score && fitness > Beta_score && fitness < Delta_score  % 如果目标函数值介于于Beta狼和Delta狼的目标函数值之间Delta_score = fitness;                                                 % 则将Delta狼的目标函数值更新为最优目标函数值Delta_pos = Positions(i, :);                                           % 同时更新Delta狼的位置endend参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718