机器学习模型之支持向量机

支持向量机(Support Vector Machine,SVM)是一种监督学习算法,用于分类和回归分析。它是由Cortes和Vapnik于1995年提出的。SVM在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

目录

一、SVM的基本概念:

二、SVM的特点:

三、SVM的局限性:

四、SVM的python实现:


一、SVM的基本概念:

  1. 超平面

    • 在二维空间中,超平面是一条直线;在三维空间中,它是一个平面;在高维空间中,它是数据的线性分割。
    • SVM的目标是找到一个最优的超平面,这个超平面能够最好地将两类数据分开。
  2. 间隔(Margin)

    • 间隔是指超平面与最近的训练样本之间的距离。这个距离越大,分类器的泛化能力就越强。
    • SVM试图最大化这个间隔,因为这样可以增加模型对未知数据的预测能力。
  3. 支持向量

    • 支持向量是指那些影响到超平面位置的训练样本,即位于最大间隔边界上的样本点。
    • 这些样本点对模型的构建至关重要,因为它们决定了超平面的位置。
  4. 软间隔和硬间隔

    • 硬间隔SVM:当数据是线性可分的时,我们可以找到完美地将数据分开的超平面。
    • 软间隔SVM:当数据不是线性可分的时候,我们允许一些样本点被错误分类或者位于间隔之内,通过引入一个松弛变量来允许一定的错误。
  5. 核技巧

    • 当数据不是线性可分的时候,SVM通过使用核技巧将数据映射到高维特征空间中,在这个空间中寻找最优超平面。
    • 常用的核函数包括线性核、多项式核、径向基函数(RBF)核和sigmoid核。
  6. 优化问题

    • SVM模型的学习可以转化为求解一个凸二次规划问题,即最大化间隔,同时最小化错误分类的样本数量。
    • 这个优化问题可以通过序列最小优化(SMO)算法等数值计算方法求解。
  7. 多分类SVM

    • 对于多分类问题,可以通过一对多(one-vs-rest)或者一对一(one-vs-one)的方法扩展SVM来解决。

二、SVM的特点:

  • 泛化能力强:由于SVM试图找到最大间隔的超平面,因此它在训练数据上的表现往往能够很好地推广到未知的测试数据上。
  • 适用于小样本:SVM是基于最小化泛化误差的上界,而不是最小化训练误差,因此它特别适用于小样本情况。
  • 避免过拟合:通过正则化项(软间隔)控制模型的复杂度,SVM能够避免过拟合问题。
  • 灵活的核函数:通过选择不同的核函数,SVM可以灵活地处理线性不可分的数据。

三、SVM的局限性:

  • 计算和存储开销大:对于大规模数据集,SVM的训练时间可能会很长,因为它需要求解一个凸二次规划问题。同时,支持向量的存储也需要一定的空间。
  • 参数选择:SVM的性能对参数C(正则化参数)和核函数的选择比较敏感,需要通过交叉验证等方法进行选择。
  • 非线性问题的核函数选择:对于非线性问题,选择合适的核函数是一个挑战,因为不同的核函数可能会得到不同的结果。

四、SVM的python实现:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建SVM分类器模型
svm_model = SVC(kernel='linear', C=1.0, random_state=42)# 在训练集上训练模型
svm_model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = svm_model.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

在这段代码中,我们首先加载了鸢尾花数据集,并将数据集划分为训练集和测试集。然后创建了一个线性核的支持向量机(SVM)分类器模型,并在训练集上进行训练。最后使用训练好的模型在测试集上进行预测,并计算准确率作为模型性能的评估指标。以根据具体的数据集和问题选择不同的核函数(如线性核、多项式核、高斯核等)以及调整SVM模型的参数(如正则化参数C、核函数参数等)来优化模型性能。

总的来说,支持向量机是一种强大且灵活的机器学习模型,具有良好的泛化能力和对噪声的鲁棒性。它在处理复杂数据集和高维特征空间时表现出色。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/788587.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Chatgpt润色论文

使用ChatGPT进行论文润色时的指令 1.英语学术润色 模板:Below is a paragraph from an academic paper. Polish the writing to meet the academic style,improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite th…

【Qt】使用Qt实现Web服务器(九):EventSource+JSON实现工业界面数据刷新

1、效果 效果如下,实时刷新温度、湿度 2、源码 2.1 index.html <html><body> <!-- 页面布局,本人对HTML标签不熟悉,凑合看吧 --> <div><label for

前后端开发之——文章分类管理

原文地址&#xff1a;前后端开发之——文章分类管理 - Pleasure的博客 下面是正文内容&#xff1a; 前言 上回书说到 文章管理系统之添加文章分类。就是通过点击“新建文章分类”按钮从而在服务端数据库中增加一个文章分类。 对于文章分类这个对象&#xff0c;增删改查属于配…

PyQt ui2py 使用PowerShell将ui文件转为py文件并且将导入模块PyQt或PySide转换为qtpy模块开箱即用

前言 由于需要使用不同的qt环境&#xff08;PySide&#xff0c;PyQt&#xff09;所以写了这个脚本&#xff0c;使用找到的随便一个uic命令去转换ui文件&#xff0c;然后将导入模块换成qtpy这个通用库(支持pyside2-6&#xff0c;pyqt5-6)&#xff0c;老版本的是Qt.py(支持pysid…

Appium无线自动化实用教程

文章目录 简介核心特点工作原理使用Appium进行自动化测试的一般步骤 环境设置安装和启动Appium Server使用Node.js和npm安装Appium Server&#xff1a;启动Appium Server:命令行启动使用Appium Desktop安装和启动Appium Server&#xff1a;使用代码启动appium server 编写测试代…

Linux|centos7|postgresql数据库主从复制之异步还是同步的问题

前言&#xff1a; postgresql数据库是一个比较先进的中型关系型数据库&#xff0c;原本以为repmgr和基于repmgr的主从复制是挺简单的一个事情&#xff0c;但现实很快就给我教育了&#xff0c;原来postgresql和MySQL一样的&#xff0c;也是有异步或者同步的复制区别的 Postgre…

vivado 面向 7 系列器件的 AES 密钥编程

要将 AES 密钥编程到 BBR 中 &#xff0c; 请在“硬件 (Hardware) ”窗口中右键单击 FPGA 器件并选中“ Program BBR Key ”。 在“ BBR 密钥编程 (Program BBR Key) ”对话框中 &#xff0c; 输入文件名或者浏览至目标文件以指定 AES 密钥文件 ( .nky ) 。指 定有效的 .n…

4.2学习总结

解题思路 遍历初始整数的全排列,然后计算每一个排列与原排列的的步数找到花费的最小值就行了 代码 #include <iostream> #include <cstdio> #include <fstream> #include <algorithm> #include <cmath> #include <deque> #include <…

Qt 使用QPropertyAnimation动画效果的图片浏览器

文章目录 效果图功能点代码解析图片切换显示与动画效果图片缩放 总结 效果图 功能点 加载指定路径下的所有图片并显示滑动滑动条查看指定图片&#xff0c;也滚轮切换图片滑动条缩略图加入动画效果图片可以进行缩放移动查看 代码解析 整体来说相对&#xff0c;显示图片的是一…

Apache Paimon实时数据糊介绍

Apache Paimon 是一种湖格式,可以使用 Flink 和 Spark 构建实时 数据糊 架构,用于流式和批处理操作。Paimon 创新地将湖格式和 LSM(日志结构合并树)结构相结合,将实时流式更新引入湖架构中。 Paimon 提供以下核心功能: 实时更新: 主键表支持大规模更新的写入,具有非常…

LeetCode 热题 100 | 动态规划(一)

目录 1 70. 爬楼梯 1.1 基本思路 1.2 官方题解 2 118. 杨辉三角 3 198. 打家劫舍 菜鸟做题&#xff0c;语言是 C 1 70. 爬楼梯 核心思想&#xff1a;把总问题拆解为若干子问题。 总问题&#xff1a;上到 5 楼的方式有多少种子问题&#xff1a;上到 4 楼的方式有多…

Oracle常用sql命令(新手)

1、备份单张表 创建复制表结构 create table employeesbak as select * from cims.employees 如果只复制表结构&#xff0c;只需要在结尾加上 where 10 插入数据 insert into employeesbak select * from cims.employees 删除一条数据 delete from…

【Servlet】服务器内部转发以及客户端重定向

文章目录 一、服务器内部转发&#xff1a;request.getRequestDispatcher("...").forward(request, response);二、客户端重定向&#xff1a;response.sendRedirect("");三、服务器内部转发代码示例四、客户端重定向代码示例 一、服务器内部转发&#xff1a…

小象超市(原美团买菜) 的大屏图表

文章目录 概要技术细节技术名词解释小结 概要 20203年12月1日&#xff0c;美团旗下自营零售品牌“美团买菜”升级为全新品牌“小象超市”。 &#xff0c;“小象超市”坚持美团自营零售模式&#xff0c;通过在社区设立的集存储、分拣、配送为一体的便民服务站&#xff0c;为社区…

go之web框架gin

介绍 Gin 是一个用 Go (Golang) 编写的 Web 框架。 它具有类似 martini 的 API&#xff0c;性能要好得多&#xff0c;多亏了 httprouter&#xff0c;速度提高了 40 倍。 如果您需要性能和良好的生产力&#xff0c;您一定会喜欢 Gin。 安装 go get -u github.com/gin-gonic/g…

【测试篇】接口测试

接口测试&#xff0c;可以用可视化工具 postman。 如何做接口测试&#xff1f;&#xff1f; 我们可以先在浏览器中随机进入一个网页&#xff0c;打开开发者工具&#xff08;F12&#xff09;。 随便找一个接口Copy–>Copy as cURL(bash) 打开postman 复制地址 进行发送。 …

R统计实战:详解机器学习Adaboost的操作步骤与应用

一、引言 机器学习是人工智能的核心领域之一&#xff0c;其重要性体现在其能够从数据中自动学习并改进的能力上。在实际问题中&#xff0c;机器学习已经被广泛应用于各个领域&#xff0c;包括但不限于金融、医疗、电子商务、社交网络等。例如&#xff0c;在金融领域&#xff0c…

maven打包本地依赖打进去

在 Maven 项目中&#xff0c;如果你需要包含本地的 jar 包依赖&#xff0c;并希望这些依赖在打包的时候被包含进去&#xff0c;可以通过以下方式解决这个问题&#xff0c;这是最推荐的方法&#xff0c;因为它符合 Maven 的依赖管理方式&#xff0c;并且可以确保这些依赖在打包时…

Java SpringBoot中优雅地判断一个对象是否为空

在Java中&#xff0c;可以使用以下方法优雅地判断一个对象是否为空&#xff1a; 使用Objects.isNull()方法判断对象是否为空&#xff1a; import java.util.Objects;if (Objects.isNull(obj)) {// obj为空的处理逻辑 }使用Optional类优雅地处理可能为空的对象&#xff1a; impo…

基于 Spring Task实现单体项目架构的定时任务

文章目录 引言I JDK 实现任务调度II Spring Task实现2.1 开启Spring的计划任务支持2.2 标注方法为计划任务2.3 创建任务自己的独立线程III 预备知识: cronExpression 表达式引言 需求: 定时更新数据到redis缓存、生成定时报表。 实现方式: Timer 是 JDK 自带的定时任务工具…