突破编程_C++_面试(基础知识(3))

面试题5:函数调用的过程

C++ 中函数的调用包含参数入栈、函数跳转、保护现场、回复现场等过程,重点过程如下:
(1)将函数的参数压入栈中,从右至左压入。
(2)调用函数时,将当前程序的执行位置(即返回地址)压入栈中。
(3)将函数的栈帧(也称为活动记录)压入栈中。栈帧包含了函数的局部变量、函数返回值、函数的上一级调用者的栈帧指针等信息。
(4)执行函数体内的语句,包括局部变量的声明和初始化、函数体语句的执行等。
(5)函数执行完毕后,将函数的返回值保存在寄存器中(或者栈中)。
(6)弹出函数的栈帧,并将返回值传递给上一级函数。
(7)将返回地址弹出栈中,程序跳转到该地址继续执行。
以如下代码为例( 64 位程序):

#include <iostream>int add(int a, int b)
{int sum = a + b;return sum;
}int main()
{int sum = add(1, 2);return 0;
}

首先给 main() 函数的第一行 int sum = add(1, 2); 打上断点,调试运行程序。
程序暂停后,查看当前汇编代码( VS2017 查看方法:右击当前代码页,选择转到反汇编):

int main()
{
00007FF67D8AA630  push        rbp  
00007FF67D8AA632  push        rdi  
00007FF67D8AA633  sub         rsp,108h  
00007FF67D8AA63A  lea         rbp,[rsp+20h]  
00007FF67D8AA63F  mov         rdi,rsp  
00007FF67D8AA642  mov         ecx,42h  
00007FF67D8AA647  mov         eax,0CCCCCCCCh  
00007FF67D8AA64C  rep stos    dword ptr [rdi]  
00007FF67D8AA64E  lea         rcx,[__81FC6F77_main2@cpp (07FF67D9E41D7h)]  
00007FF67D8AA655  call        __CheckForDebuggerJustMyCode (07FF67D874108h)  int sum = add(1, 2);
00007FF67D8AA65A  mov         edx,2  
00007FF67D8AA65F  mov         ecx,1  
00007FF67D8AA664  call        add (07FF67D87584Bh)  
00007FF67D8AA669  mov         dword ptr [sum],eax  return 0;
00007FF67D8AA66C  xor         eax,eax  
}

在汇编代码中,程序暂停在第 14 行(00007FF67D8AA65A mov edx,2)。后面的两行是传入参数的过程,其中,edx是数据寄存器,常用于存储一些大于 AX 寄存器的 16 位数和 32 位数的运算中的高位数。在函数调用中, edx 寄存器用于存储第一个参数值。ecx是计数寄存器,常用于存储循环计数器和移位操作的计数器。在函数调用中, ecx 寄存器用于存储第二个参数值。通过这两行传入的值可以看出,调用函数时,参数入栈时从右往左。
汇编行00007FF67D8AA664 call add (07FF67D87584Bh)用于跳转到待调用的函数内,但这里需要注意的是,地址07FF67D87584Bh并不是待调用的函数的地址,该代码会执行到下面这一行:

00007FF67D87584B  jmp         add (07FF67D8AA5C0h)  

这里的地址07FF67D8AA5C0h才是真正待调用函数的地址。下面即进入被调用函数内部:

int add(int a, int b)
{
00007FF67D8AA5C0  mov         dword ptr [rsp+10h],edx  
00007FF67D8AA5C4  mov         dword ptr [rsp+8],ecx  
00007FF67D8AA5C8  push        rbp  
00007FF67D8AA5C9  push        rdi  
00007FF67D8AA5CA  sub         rsp,108h  
00007FF67D8AA5D1  lea         rbp,[rsp+20h]  
00007FF67D8AA5D6  mov         rdi,rsp  
00007FF67D8AA5D9  mov         ecx,42h  
00007FF67D8AA5DE  mov         eax,0CCCCCCCCh  
00007FF67D8AA5E3  rep stos    dword ptr [rdi]  
00007FF67D8AA5E5  mov         ecx,dword ptr [rsp+128h]  
00007FF67D8AA5EC  lea         rcx,[__81FC6F77_main2@cpp (07FF67D9E41D7h)]  
00007FF67D8AA5F3  call        __CheckForDebuggerJustMyCode (07FF67D874108h)  int sum = a + b;
00007FF67D8AA5F8  mov         eax,dword ptr [b]  
00007FF67D8AA5FE  mov         ecx,dword ptr [a]  
00007FF67D8AA604  add         ecx,eax  
00007FF67D8AA606  mov         eax,ecx  
00007FF67D8AA608  mov         dword ptr [sum],eax  return sum;
00007FF67D8AA60B  mov         eax,dword ptr [sum]  
}

这段汇编代码的第 2 行到第 15 行之间是对该函数的栈初始化工作,由编译器自动添加。其中 rsp ( 32 位程序中是 esp ) 、rbp ( 32 位程序中是 ebp )、rdi ( 32 位程序中是 edi )是常用的寄存器:
rsp 为栈指针,常用来指向栈顶。上面汇编代码中第 6 行00007FF67D8AA5CA sub rsp,108h的意思是将栈顶指针往上移动 108h Byte。这个区域为间隔空间,将被调用的 add 函数与 main 函数的栈区域隔开一段距离,同时还要预留出存储局部变量的内存区域。
rbp 为基址指针,常用来指向栈底。
rdi 为目的变址寄存器。
上面汇编代码的第 17 行到第 21 行之间是进行两数相加的逻辑操作。
执行到第最后一行后打开寄存器查看器( VS2017 查看方法:调试–>窗口–>寄存器),可以查看到如下值:

RAX = 0000000000000003 RBX = 0000000000000000 RCX = 0000000000000003 RDX = 0000000000000002 RSI = 0000000000000000 RDI = 0000005BD30FFA58 R8  = 0000020993014F70 R9  = 0000005BD30FF954 R10 = 0000000000000013 R11 = 00000209930242E0 R12 = 0000000000000000 R13 = 0000000000000000 R14 = 0000000000000000 R15 = 0000000000000000 RIP = 00007FF67D8AA60B RSP = 0000005BD30FF950 RBP = 0000005BD30FF970 EFL = 00000206 0x0000005BD30FF974 = 00000003 

查看寄存器 RDI 的内存值( VS2017 查看方法:调试–>窗口–>内存->内存1):

0000005bd30ffb78 0000005bd30ffa90 00007ff67d8aa669 00007ff600000001 cccccccc00000002 cccccccccccccccc cccccccccccccccc cccccccccccccccc cccccccccccccccc cccccccccccccccc cccccccccccccccc

其中第三个值 00007ff67d8aa669 是 main 函数中调用该函数后的下一行汇编代码。
至此,整个调用过程结束。

面试题6:怎样判断两个浮点数是否相等

由于浮点数存入时有可能因为四舍五入而造成精度损失,所以两个浮点数直接用==操作符进行比较很可能会得到不符合预期的结果。
浮点数的比较应该使用如下方式:
对于浮点数而言比较合适的精度为:0.000001
对于双精度浮点数而言比较合适的精度为:0.0000000000000001
因此可以定义两个宏:

#define ACCURACY_F 1e-6
#define ACCURACY_D 1e-16

判断浮点数是否等于 0 :
float 类型:if(fabs(f) <= ACCURACY_F );
double 类型:if(fabs(d) <= ACCURACY_D);
判断两个浮点数是否相等:
float 类型:if(fabs(f1 - f2) <= ACCURACY_F);
double 类型:if(fabs(d1 - d2) <= ACCURACY_D);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/664532.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

车载测试Vector工具CANoe——常见问题汇总(上)

车载测试Vector工具CANoe——常见问题汇总(上) 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一…

Javaweb之SpringBootWeb案例之yml配置文件的详细解析

4.2 yml配置文件 前面我们一直使用springboot项目创建完毕后自带的application.properties进行属性的配置&#xff0c;那其实呢&#xff0c;在springboot项目当中是支持多种配置方式的&#xff0c;除了支持properties配置文件以外&#xff0c;还支持另外一种类型的配置文件&am…

【数据开发】pyspark入门与RDD编程

【数据开发】pyspark入门与RDD编程 文章目录 1、pyspark介绍2、RDD与基础概念3、RDD编程3.1 Transformation/Action3.2 数据开发流程与环节 1、pyspark介绍 pyspark的用途 机器学习专有的数据分析。数据科学使用Python和支持性库的大数据。 spark与pyspark的关系 spark是一…

简单实践 java spring boot 自动配置模拟

1.概要 1.1 需求&#xff0c;自己写一个redis-spring-boot-starter模拟自动配置 自动配置就是在引入*-starter坐标后&#xff0c;可以已经spring框架的规则实现一些Bean的自动注入&#xff0c;并设置一些参数的默认值&#xff0c;且也可以在引入的工程中修改这些配置的值。这…

金蝶云星空本地构建部署包时报错

文章目录 金蝶云星空本地构建部署包时报错报错内容原因分析 金蝶云星空本地构建部署包时报错 报错内容 描述 C:\Windows\Microsoft.NET\Framework\v4.0.30319\Microsoft.Common.targets(2769,5): error MSB3086: 任务未能使用 SdkToolsPath“”或注册表项“HKEY_LOCAL_MACHIN…

通过低代码开发实现数据可视化应用的简易指南

随着数据分析和决策变得越来越重要&#xff0c;数据可视化应用的需求也不断增长。低代码开发平台为开发人员提供了一种快速构建数据可视化应用的途径&#xff0c;本文将介绍如何利用低代码平台实现数据可视化应用的方法和步骤。 在当今数据驱动的时代&#xff0c;企业和组织需要…

面试150 二进制求和 位运算

Problem: 67. 二进制求和 文章目录 思路复杂度Code 思路 &#x1f468;‍&#x1f3eb; 参考 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( n ) O(n) O(n) Code class Solution {public String addBinary(String a, String b){StringBuilder ans new Stri…

MS Access 函数参考手册(MS Access 日期函数、MS Access 其他函数)

目录 MS Access 日期函数 MS Access Date() 函数 MS Access DateAdd() 函数 MS Access DateDiff() 函数 MS Access DatePart() 函数 MS Access DateSerial() 函数 MS Access DateValue() 函数 MS Access Day() 函数 MS Access Format() 函数 MS Access Hour() 函数 …

pyspark学习-spark.sql.functions 聚合函数

https://spark.apache.org/docs/3.4.1/api/python/reference/pyspark.sql/functions.html 1. approx_count_distinct和count_distinct #approx_count_distinct(col:ColumnOrName,rsd:Optionnal[float]None) """ 作用:返回列col的近似不同计数&#xff0c;返回…

C语言:内存函数(memcpy memmove memset memcmp使用)

和黛玉学编程呀------------- 后续更新的节奏就快啦 memcpy使用和模拟实现 使用 void * memcpy ( void * destination, const void * source, size_t num ) 1.函数memcpy从source的位置开始向后复制num个字节的数据到destination指向的内存位置。 2.这个函数在遇到 \0 的时候…

确保分布式系统的稳定性:深入理解接口幂等性

确保分布式系统的稳定性&#xff1a;深入理解接口幂等性 在分布式系统中&#xff0c;网络波动、系统故障或用户操作可能导致同一个请求被多次发送至服务器&#xff0c;如果服务器对每个重复的请求都作出新的响应&#xff0c;就可能导致数据的不一致或业务逻辑的错误。为了解决…

常用抓包软件集合(Fiddler、Charles)

1. Fiddler 介绍&#xff1a;Fiddler是一个免费的HTTP和HTTPS调试工具&#xff0c;支持Windows平台。它可以捕获HTTP和HTTPS流量&#xff0c;并提供了丰富的调试和分析功能。优点&#xff1a;易于安装、易于使用、支持多种扩展、可以提高开发效率。缺点&#xff1a;只支持Wind…

龙芯3A6000_统信UOS_麒麟KYLINOS上创建密钥对加解密文件

原文链接&#xff1a;龙芯3A6000|统信UOS/麒麟KYLINOS上创建密钥对加解密文件 大家好&#xff01;在当今数字化时代&#xff0c;数据安全变得越来越重要。为了帮助大家更好地保护自己的数据&#xff0c;今天我为大家带来一篇关于在统信UOS和麒麟KYLINOS操作系统上创建和使用密钥…

【日常聊聊】开源软件影响力

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a;JAVA ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 方向一&#xff1a;开源软件如何推动技术创新 方向二&#xff1a;开源软件的商业模式 方向三&#xff1a;开源软件的安全风险 方…

UDP和TCP的区别和联系

传输层&#xff1a;定义传输数据的协议端口号&#xff0c;以及流控和差错校验。 协议有&#xff1a;TCP、UDP等 UDP和TCP的主要区别包括以下几个方面&#xff1a; 1、连接性与无连接性&#xff1a;TCP是面向连接的传输控制协议&#xff0c;而UDP提供无连接的数据报服务。这意…

为期 90 天的免费数据科学认证(KNIME)

从 2 月 1 日开始&#xff0c;KNIME 官方将免费提供 KNIME 认证 90 天。 无论您是刚刚迈入数据科学领域、已经掌握了一些技术&#xff0c;还是正在构建预测模型&#xff0c;都可以参加为期 90 天的 KNIME 认证挑战赛&#xff0c;完成尽可能多的认证并获得数据科学技能免费认证。…

C#验证字符串是否纯字母:用正则表达式 vs 用Char.IsLetter方法加遍历

目录 一、使用的方法 1.使用正则表达式 2.使用Char.IsLetter方法 二、实例 1. 源码 2.生成效果 一、使用的方法 1.使用正则表达式 使用正则表达式可以验证用户输入的字符串是否为字母。匹配的正则表达式可以是&#xff1a;^[A-Za-z]$、^[A-Za-z]{1,}$、^[A-Za-z]*$。 …

【C语言】数组的应用:扫雷游戏(包含扩展和标记功能)附完整源代码

这个代码还是比较长的&#xff0c;为了增加可读性&#xff0c;我们还是把他的功能分装到了test.c&#xff0c;game.c&#xff0c;game.h里面。 扫雷游戏的规则相信大家来阅读本文之前已经知晓了&#xff0c;如果点到雷就输了&#xff0c;如果不是雷&#xff0c;点到的格子会显…

Pytorch-统计学方法、分布函数、随机抽样、线性代数运算、矩阵分解

Tensor中统计学相关的函数 torch.mean() #返回平均值 torch.sum() #返回总和 torch.prod() #计算所有元素的积 torch.max() # 返回最大值 torch.min() # 返回最小值 torch.argmax() #返回最大值排序的索引值 torch.argmin() #返回最小值排序的索引值 torch.std() #返回标准差 …

BEV感知算法学习

BEV感知算法学习 3D目标检测系列 Mono3D(Monocular 3D Object Detection for Autonomous Driving) 流程&#xff1a; 通过在地平面上假设先验&#xff0c;在3D空间中对具有典型物理尺寸的候选边界框进行采样&#xff1b;然后我们将这些方框投影到图像平面上&#xff0c;从而避…