大创项目推荐 深度学习实现语义分割算法系统 - 机器视觉

文章目录

  • 1 前言
  • 2 概念介绍
    • 2.1 什么是图像语义分割
  • 3 条件随机场的深度学习模型
    • 3\. 1 多尺度特征融合
  • 4 语义分割开发过程
    • 4.1 建立
    • 4.2 下载CamVid数据集
    • 4.3 加载CamVid图像
    • 4.4 加载CamVid像素标签图像
  • 5 PyTorch 实现语义分割
    • 5.1 数据集准备
    • 5.2 训练基准模型
    • 5.3 损失函数
    • 5.4 归一化层
    • 5.5 数据增强
    • 5.6 实现效果
  • 6 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习实现语义分割算法系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 概念介绍

2.1 什么是图像语义分割

这几年,随着深度学习理论和大规模并行计算设备快速发展,计算机视觉的诸多难点实现了质的突破,包括图像分类叫、目标检测、语义分割等等。

其中图像分类和目标检测在各种场景应用中大放光彩。目前最先进网络的准确度已经超过人类。

而图像语义分割是一.种语义信息更丰富的视觉识别任务,其主要任务是实现像素级别的分类。

图像语义分割示意图如下图所示。

图像语义分割技术在实际中有着非常广泛的应用,如自动驾驶、生物医学以及现实增强技术等等。

在这里插入图片描述

语义分割在自动驾驶的应用:

在这里插入图片描述
在这里插入图片描述

3 条件随机场的深度学习模型

整个深度学习模型框架下如图:
在这里插入图片描述

3. 1 多尺度特征融合

图像中的各类物体都以不同的形态出现, 用来观测它们的尺度也不尽相同, 不同的物体需要用合适的尺度来测量。

尺度也有很多种, 宏观上大的如“米”、“千米” 甚至“光年”; 微观上小的如“微米”、“纳米” 甚至是“飞米”。 在日常生活中,
人们也经常接触到尺度上的变换, 例如人们经常用到的电子地图上的放大与缩小、 照相机焦距的变化等,都是以不同的尺度来观察或者测量不同的物体。

当人们将一幅图像输入到计算机中时, 计算机要尝试很多不同的尺度以便得到描述图片中不同物体的最合适的尺度。

卷积神经网络中含有大量的超参数, 而且在网络中的任何一个参数, 都会对网络生成的特征映射产生影响。 当卷积神经网络的结构已经确定下来时,
网络中每一层学习到的特征映射的尺度也随之固定了下来, 拥有了在一定程度上的尺度不变性。

与此同时, 为了完成当前的任务, 网络中的这些已经设置好的超参数不能被随意更改, 所以必须要考虑融合多尺度特征的神经网络。

这种神经网络可以学习学长提供的框架不同尺度的图像特征, 获得不同尺度的预测, 进而将它们融合, 获得最后的输出。

一种多尺度特征融合网络如下所示。

在这里插入图片描述

4 语义分割开发过程

学长在这详细说明图像语义分割,如何进行开发和设计

语义分割网络对图像中的每个像素进行分类,从而产生按类别分割的图像。语义分割的应用包括用于自主驾驶的道路分割和用于医学诊断的癌细胞分割。有关详细信息,请参阅语义分段基础知识(计算机视觉系统工具箱)。

为了说明训练过程,学长训练SegNet ,一种设计用于语义图像分割的卷积神经网络(CNN)。用于语义分段的其他类型网络包括完全卷积网络(FCN)和U-
Net。此处显示的培训程序也可以应用于这些网络。

此示例使用剑桥大学的CamVid数据集进行培训。此数据集是包含驾驶时获得的街道视图的图像集合。该数据集为32种语义类提供了像素级标签,包括汽车,行人和道路。

4.1 建立

此示例创建具有从VGG-16网络初始化的权重的SegNet网络。要获得VGG-16,请安装适用于VGG-16网络的Deep Learning
Toolbox™模型。安装完成后,运行以下代码以验证安装是否正确。

vgg16();
下载预训练版的SegNet。预训练模型允许您运行整个示例,而无需等待培训完成。pretrainedURL = 'https: //www.mathworks.com/supportfiles/vision/data/segnetVGG16CamVid.mat ' ;
pretrainedFolder = fullfile(tempdir,'pretrainedSegNet';
pretrainedSegNet = fullfile(pretrainedFolder,'segnetVGG16CamVid.mat'; 
如果〜存在(pretrainedFolder,'dir')MKDIR(pretrainedFolder);disp('下载预训练的SegNet(107 MB)......';websave(pretrainedSegNet,pretrainedURL);
结束

强烈建议使用具有计算能力3.0或更高版本的支持CUDA的NVIDIA™GPU来运行此示例。使用GPU需要Parallel Computing
Toolbox™。

4.2 下载CamVid数据集

从以下URL下载CamVid数据集。

imageURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip;  
labelURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip;outputFolder = fullfile(tempdir,‘CamVid’);如果〜存在(outputFolder,‘dir’)MKDIR(outputFolder)
labelsZip = fullfile(outputFolder,'labels.zip';
imagesZip = fullfile(outputFolder,'images.zip';   disp('下载16 MB CamVid数据集标签......';
websave(labelsZip,labelURL);
unzip(labelsZip,fullfile(outputFolder,'labels'));disp('下载557 MB CamVid数据集图像......';  
websave(imagesZip,imageURL);       
解压缩(imagesZip,fullfile(outputFolder,'images'));    

注意:数据的下载时间取决于您的Internet连接。上面使用的命令会阻止MATLAB,直到下载完成。或者,您可以使用Web浏览器首先将数据集下载到本地磁盘。要使用从Web下载的文件,请将outputFolder上面的变量更改为下载文件的位置。

4.3 加载CamVid图像

使用imageDatastore加载CamVid图像。在imageDatastore使您能够高效地装载大量收集图像的磁盘上。imgDir = fullfile(outputFolder,'images''701_StillsRaw_full';
imds = imageDatastore(imgDir);
显示其中一个图像。

在这里插入图片描述

4.4 加载CamVid像素标签图像

使用pixelLabelDatastore加载CamVid像素标签图像数据。A
pixelLabelDatastore将像素标签数据和标签ID封装到类名映射中。

按照原始SegNet论文[1]中使用的程序,将CamVid中的32个原始类分组为11个类。指定这些类。

class = [“Sky” “Building” “Pole” “Road” “Pavement” “Tree” “SignSymbol” “Fence” “Car” “Pedestrian” “Bicyclist” ];

要将32个类减少为11个,将原始数据集中的多个类组合在一起。例如,“Car”是“Car”,“SUVPickupTruck”,“Truck_Bus”,“Train”和“OtherMoving”的组合。使用支持函数返回分组的标签ID,该函数camvidPixelLabelIDs在本示例的末尾列出。

abelIDs = camvidPixelLabelIDs();
使用类和标签ID来创建 pixelLabelDatastore.labelDir = fullfile(outputFolder,'labels';
pxds = pixelLabelDatastore(labelDir,classes,labelIDs);
通过将其叠加在图像上来读取并显示其中一个像素标记的图像。C = readimage(pxds,1;cmap = camvidColorMap;B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
pixelLabelColorbar(CMAP,班);

在这里插入图片描述

5 PyTorch 实现语义分割

学长这里给出一个具体实例 :

使用2020年ECCV Vipriors Chalange Start Code实现语义分割,并且做了一些优化,让进度更高

5.1 数据集准备

使用Cityscapes的数据集MiniCity Dataset。

在这里插入图片描述

将各基准类别进行输入:

在这里插入图片描述

从0-18计数,对各类别进行像素标记:

在这里插入图片描述

使用deeplab v3进行基线测试,结果发现次要类别的IoU特别低,这样会导致难以跟背景进行区分。

如下图中所示的墙、栅栏、公共汽车、火车等。

在这里插入图片描述

注意: 以上的结果表述数据集存在严重的类别不平衡问题。

5.2 训练基准模型

使用来自torchvision的DeepLabV3进行训练。

硬件为4个RTX 2080 Ti GPU (11GB x 4),如果只有1个GPU或较小的GPU内存,请使用较小的批处理大小(< = 8)。

python baseline.py --save_path baseline_run_deeplabv3_resnet50 --crop_size 576 1152 --batch_size 8;  
python baseline.py --save_path baseline_run_deeplabv3_resnet101 --model DeepLabv3_resnet101 --train_size 512 1024 --test_size 512 1024 --crop_size 384 768 --batch_size 8; 

5.3 损失函数

有3种损失函数可供选择,分别是:交叉熵损失函数(Cross-Entropy Loss)、类别加权交叉熵损失函数(Class-Weighted Cross
Entropy Loss)和焦点损失函数(Focal Loss)。

交叉熵损失函数,常用在大多数语义分割场景,但它有一个明显的缺点,那就是对于只用分割前景和背景的时候,当前景像素的数量远远小于背景像素的数量时,模型严重偏向背景,导致效果不好。

# Cross Entropy Loss  
python baseline.py --save_path baseline_run_deeplabv3_resnet50 --crop_size 576 1152 --batch_size 8; 

类别加权交叉熵损失函数是在交叉熵损失函数的基础上为每一个类别添加了一个权重参数,使其在样本数量不均衡的情况下可以获得更好的效果。

# Weighted Cross Entropy Loss  
python baseline.py --save_path baseline_run_deeplabv3_resnet50_wce --crop_size 576 1152 --batch_size 8 --loss weighted_ce; 

焦点损失函数则更进一步,用来解决难易样本数量不平衡。

# Focal Loss  
python baseline.py --save_path baseline_run_deeplabv3_resnet50_focal --crop_size 576 1152 --batch_size 8 --loss focal --focal_gamma 2.0; 

5.4 归一化层

在这里插入图片描述

BN是在batch上,对N、H、W做归一化,而保留通道 C 的维度。BN对较小的batch size效果不好。

5.5 数据增强

2种数据增强技术

  • CutMix
  • Copy Blob

在 Blob 存储的基础上构建,并通过Copy的方式增强了性能。

在这里插入图片描述

另外,如果要解决前面所提到的类别不平衡问题,则可以使用视觉归纳优先的CopyBlob进行增强。

# CopyBlob Augmentation  
python baseline.py --save_path baseline_run_deeplabv3_resnet50_copyblob --crop_size 576 1152 --batch_size 8 --copyblob; 

5.6 实现效果

多尺度推断

使用[0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.2]进行多尺度推理。另外,使用H-Flip,同时必须使用单一批次。

# Multi-Scale Inference  
python baseline.py --save_path baseline_run_deeplabv3_resnet50 --batch_size 1 --predict --mst; 

使用验证集计算度量

计算指标并将结果保存到results.txt中。

python evaluate.py --results baseline_run_deeplabv3_resnet50/results_val --batch_size 1 --predict --mst; 

训练结果
在这里插入图片描述

最后的单一模型结果是0.6069831962012341,

如果使用了更大的模型或者更大的网络结构,性能可能会有所提高。

另外,如果使用了各种集成模型,性能也会有所提高。

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/609880.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言程序设计期末例题复习

题目一&#xff1a; 题目 输入两个非负整数a和b&#xff0c;输出两个非负整数的和(ab)。数据规模 0<a,b< 10 99−1样例1 输入 1 1 ​ 输出 2 ​ ​ 样例2 输入 1844674407370955161 1 ​ 输出 1844674407370955162 代码实现&#xff1a; void reverse(char *s){//反转…

【Kubernetes】如何使用 kubectl 操作 cluster、node、namespace、pod

如何使用 kubectl 操作 cluster、node、namespace、pod 在列出、描述、修改或删除其他命名空间中的对象时&#xff0c;需要给 kubectl 命令传递 --namespace&#xff08;或 -n&#xff09;选项。如果不指定命名空间&#xff0c;kubectl 将在当前上下文中配置的默认命名空间中执…

整理的Binder、DMS、Handler、PMS、WMS等流程图

AMS&#xff1a; Binder&#xff1a; Handler&#xff1a; PMS&#xff1a; starActivity&#xff1a; WMS&#xff1a; 系统启动&#xff1a;

1884_emacs ivy minibuffer中上下行导航快捷键修改

全部学习汇总&#xff1a; GitHub - GreyZhang/editors_skills: Summary for some common editor skills I used. 我自己凑了一组emacs的配置使用了很长一段时间&#xff0c;很大程度上的功能在模仿spacemacs&#xff0c;但是我的配置更加轻量化&#xff0c;因此在使用的时候延…

数据库教程:从基础到进阶

数据库教程&#xff1a;从基础到进阶 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天&#xff0c;我们将一同探索一项对于每位程序猿都至关重要的技能——“数据…

梯度提升机(Gradient Boosting Machines,GBM)

什么是机器学习 梯度提升机&#xff08;Gradient Boosting Machines&#xff0c;GBM&#xff09;是一种集成学习方法&#xff0c;通过将多个弱学习器&#xff08;通常是决策树&#xff09;组合成一个强学习器来提高模型的性能。GBM的训练过程是通过迭代&#xff0c;每一步都根…

设备树在开发板的系统中的体现

一. 简介 设备树文件中的设备节点&#xff0c;可以在开发板系统中看到。 也就说&#xff0c;开发板加载设备树文件&#xff0c;Linux内核启动系统以后&#xff0c;可以在根文件系统里看到设备树的节点信息。在/proc/device-tree/目录下存放着设备树信息。 二. 设备树在开发板…

数据结构单链表定义及例题(上)

本文简要的介绍了单链表的定义,以及单链表的头插法和尾插法的实现 文章目录 一、单链表数据结构的定义 二、头插法建立单链表(带头节点) 三、尾插法建立单链表(带头节点) 四、打印单链表 五、测试及全部代码 总结 前言 单链表是学习,以及考研无论是408还是自命题都是很重…

序列模型(4)—— Scaling Laws

本文介绍 LLM 训练过程中重要的 Scaling Laws&#xff0c;这是一个经验规律&#xff0c;指出了固定训练成本&#xff08;总计算量FLOPs&#xff09; C C C 时&#xff0c;如何调配模型规模&#xff08;参数量&#xff09; N N N 和训练 Token 数据量 D D D&#xff0c;才能实现…

算法训练day9Leetcode232用栈实现队列225用队列实现栈

今天学习的文章和视频链接 https://programmercarl.com/%E6%A0%88%E4%B8%8E%E9%98%9F%E5%88%97%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 栈与队列理论基础 见我的博客 https://blog.csdn.net/qq_36372352/article/details/135470438?spm1001.2014.3001.5501 232用栈实现…

maven模块化开发部署

之前一直维护迭代的产品,因为有很多客户使用.有些用户有定制化需求,需要添加新的模块功能.因此需要平台主体功能迭代的同时,非主体功能和定制化功能插件化. 一.实现方案 分为开发和部署两个步骤: 1.开发 已经确定肯定是采用maven父子工程,单独的模块可独立开发及独立部署. 原…

Spring中Bean的生命周期

第一、Bean的生命周期 Spring中Bean的生命周期就是Bean在Spring中从创建到销毁的整个过程&#xff0c;主要分为以下5个部分&#xff1a; 1.实例化&#xff1a; 给Bean分配内存空间&#xff08;对应JVM中的“加载”&#xff0c;这里只是分配了内存&#xff09;&#xff1b; 2.设…

ffmpeg[学习(四)](代码实现) 实现音频数据解码并且用SDL播放

0、作者杂谈 CSDN大多数都是落后的&#xff0c;要么是到处复制粘贴的&#xff0c;对于初学者我来说困惑了很久&#xff0c;大多数CSDN文章都是使用旧的API &#xff0c;已经被否决了&#xff0c;于是我读一些官方文档&#xff0c;和一些开源项目音视频的输出过程&#xff0c;写…

开源的RNA-Seq分析软件Trinity的详细介绍和使用方法

介绍 GitHub - trinityrnaseq/trinityrnaseq: Trinity RNA-Seq de novo transcriptome assembly Trinity是一种开源的RNA-Seq分析软件&#xff0c;用于转录组的de novo组装。转录组de novo组装是通过将RNA-Seq数据中的短序列片段&#xff08;reads&#xff09;重新组装成完整的…

模型容器与AlexNet构建

一、模型容器——Containers nn.Sequential 是 nn.module的容器&#xff0c;用于按顺序包装一组网络层 Sequential 容器 nn.Sequential 是 nn.module的容器&#xff0c;用于按顺序包装一组网络层 • 顺序性&#xff1a;各网络层之间严格按照顺序构建 • 自带forward()&#xf…

x-cmd pkg | grex - 用于生成正则表达的命令行工具

目录 简介首次用户生成的正则表达式与 perl 和 rust 兼容支持 Unicode 符号友好的用户体验进一步阅读 简介 grex 是一个旨在简化创作正则表达式的复杂且繁琐任务的库和命令行程序。这个项目最初是 Devon Govett 编写的 JavaScript 工具 regexgen 的 Rust 移植。但 regexgen 在…

二级C语言备考1

一、单选 共40题 &#xff08;共计40分&#xff09; 第1题 &#xff08;1.0分&#xff09; 题号:6923 难度:较易 第1章 以下叙述中正确的是 A:C语言规定必须用main作为主函数名,程序将从此开始执行 B:可以在程序中由用户指定任意一个函数作为主函数…

Oracle游标深入探讨

Oracle游标深入探讨 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;在今天的分享中&#xff0c;我将带大家深入探讨Oracle游标&#xff0c;这是数据库操作中一个极为…

AArch64 Exception Model学习

提示 该博客主要为个人学习&#xff0c;通过阅读官网手册整理而来&#xff08;个人觉得阅读官网的英文文档非常有助于理解各个IP特性&#xff09;。若有不对之处请参考参考文档&#xff0c;以官网文档为准。 1 Privilege and Exception Levels 1.1 为什么要划分权限&#xf…

Python的异常处理案例——网购平台交易案例

需求 假设有多条交易信息&#xff0c;写个raise抛出异常&#xff0c;try…except 负责梳理出正常数据有哪些和非正常数据有哪些 解决 使用 raise 抛出异常并使用 try-except 梳理出正常数据和非正常数据&#xff1a; class InvalidTransactionException(Exception):def __i…