视觉SLAM十四讲|【四】误差Jacobian推导
预积分误差递推公式
 ω = 1 2 ( ( ω b k + n k g − b k g ) + ( w b k + 1 + n k + 1 g − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))
 其中, w b k w_b^k wbk为 k k k时刻下body坐标系的角速度, n k g n_k^g nkg为 k k k时刻下陀螺仪白噪声, b k g b_k^g bkg为 k k k时刻下陀螺仪偏置量。 n k a n_k^a nka为 k k k时刻下加速度白噪声, b k a b_k^a bka为 k k k时刻下加速度偏置量。 k + 1 k+1 k+1时刻下记号同理。
  q b i b k + 1 = q b i b k ⊗ [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbibk+1=qbibk⊗[1,21ωδt]T
  a = 1 2 ( q b i b k ( a b k + n b k − b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21(qbibk(abk+nbk−bka)+qbibk+1(abk+1+nbk+1−bk+1a))
  α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 \alpha_{b_i b_{k+1}} = \alpha_{b_i b_{k}} + \beta_{b_i b_k} \delta t + \frac{1}{2}a \delta t^2 αbibk+1=αbibk+βbibkδt+21aδt2
  β b i b k + 1 = β b i b k + a δ t \beta_{b_i b_{k+1}} = \beta_{b_i b_{k}} + a\delta t βbibk+1=βbibk+aδt
  b k + 1 a = b k a + n b k a δ t b_{k+1}^a = b_k^a + n_{b_k^a}\delta t bk+1a=bka+nbkaδt
  b k + 1 g = b k g + n b k g δ t b_{k+1}^g = b_k^g + n_{b_k^g}\delta t bk+1g=bkg+nbkgδt
示例1
 f 15 = δ α b i b k + 1 δ b k g f_{15} = \frac{\delta \alpha_{b_i b_{k+1}}}{\delta b_k^g} f15=δbkgδαbibk+1
 由上面的递推公式可知
  α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 \alpha_{b_i b_{k+1}} = \alpha_{b_i b_{k}} + \beta_{b_i b_k} \delta t + \frac{1}{2}a \delta t^2 αbibk+1=αbibk+βbibkδt+21aδt2
 其中, α b i b k \alpha_{b_i b_{k}} αbibk、 β b i b k δ t \beta_{b_i b_k}\delta t βbibkδt都与 b k g b_k^g bkg无关,可以省略,而很容易看出 a a a中含有 q b i b k + 1 q_{b_i b_{k+1}} qbibk+1项,其中进一步含有对 b k g b_k^g bkg相关的元素,必须保留。因此进一步推得
  f 15 = δ 1 2 a δ t 2 δ b k g f_{15} = \frac{\delta \frac{1}{2} a \delta t^2}{\delta b_k^g} f15=δbkgδ21aδt2
 其中,
  a = 1 2 ( q b i b k ( a b k + n b k − b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21(qbibk(abk+nbk−bka)+qbibk+1(abk+1+nbk+1−bk+1a))
  q b i b k ( a b k + n b k − b k a ) q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) qbibk(abk+nbk−bka)依然与 b k g b_k^g bkg无关,可以省略。
  f 15 = δ 1 4 q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk+1(abk+1+nbk+1−bk+1a)δt2
 白噪声项不可知,拿掉
  f 15 = δ 1 4 q b i b k + 1 ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_{k+1}} (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk+1(abk+1−bk+1a)δt2
  f 15 = δ 1 4 q b i b k + 1 ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_{k+1}} (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk+1(abk+1−bk+1a)δt2
  q b i b k + 1 = q b i b k ⊗ [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbibk+1=qbibk⊗[1,21ωδt]T
  f 15 = δ 1 4 q b i b k ⊗ [ 1 , 1 2 ω δ t ] T ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk⊗[1,21ωδt]T(abk+1−bk+1a)δt2
 其中
  ω = 1 2 ( ( ω b k + n k g − b k g ) + ( w b k + 1 + n k + 1 g − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))
 去除不可知的白噪声项
  ω = 1 2 ( ( ω b k − b k g ) + ( w b k + 1 − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k-b_k^g)+(w_b^{k+1}-b_{k+1}^g)) ω=21((ωbk−bkg)+(wbk+1−bk+1g))
 由于 k + 1 k+1 k+1时刻的信息并不知道,在此处如果不使用中值积分,直接使用初始值,有
  ω = ω b k − b k g \omega =\omega_b^k-b_k^g ω=ωbk−bkg
  f 15 = δ 1 4 q b i b k ⊗ [ 1 , 1 2 ( ω b k − b k g ) δ t ] T ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_k} \otimes [1, \frac{1}{2} (\omega_b^k-b_k^g) \delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15=δbkgδ41qbibk⊗[1,21(ωbk−bkg)δt]T(abk+1−bk+1a)δt2
 此时,为了便于计算,我们需要把四元数表示旋转转换为用旋转矩阵表示矩阵的旋转,得到
  f 15 = 1 4 δ R b i b k exp  ( ( ( w b k − b k g ) δ t ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp(((w_b^k-b_k^g)\delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp(((wbk−bkg)δt)∧)(abk+1−bk+1a)δt2
 观察式子,我们要想办法把 b k g b_k^g bkg拆出来。回顾上一章,李代数旋转有性质
  l n ( R e x p ( ϕ ∧ ) ) ∨ = l n ( R ) ∨ + J r − 1 ϕ ln(Rexp(\phi^{\land}))^{\vee}=ln(R)^{\vee}+J_r^{-1}\phi ln(Rexp(ϕ∧))∨=ln(R)∨+Jr−1ϕ
 类似的,对于非对数情况,有
  exp  ( ( ϕ + δ ϕ ) ∧ ) = exp  ( ϕ ∧ ) exp  ( ( J r ( ϕ ) δ ϕ ) ∧ ) \exp( (\phi + \delta\phi)^{\wedge} )= \exp(\phi^{\wedge})\exp((J_r(\phi)\delta\phi)^{\wedge}) exp((ϕ+δϕ)∧)=exp(ϕ∧)exp((Jr(ϕ)δϕ)∧)
  lim  ϕ → 0 J r ( ϕ ) = I \lim_{\phi \rightarrow 0} J_r(\phi)=I ϕ→0limJr(ϕ)=I
  exp  ( ( ( w b k − b k g ) δ t ) ∧ = exp  ( ( w b k δ t ) ∧ ) exp  ( ( J r ( w b k δ t ) ( − b k g δ t ) ) ∧ ) \exp(((w_b^k-b_k^g)\delta t)^{\wedge}=\exp((w_b^k\delta t)^{\wedge})\exp((J_r(w_b^k\delta t)(-b_k^g \delta t))^{\wedge}) exp(((wbk−bkg)δt)∧=exp((wbkδt)∧)exp((Jr(wbkδt)(−bkgδt))∧)
  f 15 = 1 4 δ R b i b k exp  ( ( ( w b k − b k g ) δ t ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp(((w_b^k-b_k^g)\delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp(((wbk−bkg)δt)∧)(abk+1−bk+1a)δt2
  f 15 = 1 4 δ R b i b k exp  ( ( w b k δ t ) ∧ ) exp  ( ( J r ( w b k δ t ) ( − b k g δ t ) ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp((w_b^k\delta t)^{\wedge})\exp((J_r(w_b^k\delta t)(-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp((wbkδt)∧)exp((Jr(wbkδt)(−bkgδt))∧)(abk+1−bk+1a)δt2
  w b k δ t → 0 w_b^k\delta t \rightarrow0 wbkδt→0
  f 15 = 1 4 δ R b i b k exp  ( ( J r ( w b k δ t ) ( − b k g δ t ) ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp((J_r(w_b^k\delta t)(-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp((Jr(wbkδt)(−bkgδt))∧)(abk+1−bk+1a)δt2
  f 15 = 1 4 δ R b i b k exp  ( ( − b k g δ t ) ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp((-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibkexp((−bkgδt))∧)(abk+1−bk+1a)δt2
  f 15 = 1 4 δ R b i b k ( I + ( − b k g δ t ) ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} (I+(-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibk(I+(−bkgδt))∧)(abk+1−bk+1a)δt2
  f 15 = 1 4 δ R b i b k ( − b k g δ t ) ∧ ( a b k + 1 − b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} (-b_k^g \delta t)^{\wedge}(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibk(−bkgδt)∧(abk+1−bk+1a)δt2
 使用伴随性质,有
  f 15 = 1 4 δ R b i b k ( a b k + 1 − b k + 1 a ) ∧ ( b k g δ t ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} (a_b^{k+1} - b_{k+1}^a)^{\wedge}(b_k^g \delta t)\delta t^2}{\delta b_k^g} f15=41δbkgδRbibk(abk+1−bk+1a)∧(bkgδt)δt2
  f 15 = 1 4 R b i b k ( a b k + 1 − b k + 1 a ) ∧ δ t 2 δ t f_{15}=\frac{1}{4} R_{b_i b_k} (a_b^{k+1} - b_{k+1}^a)^{\wedge} \delta t^2 \delta t f15=41Rbibk(abk+1−bk+1a)∧δt2δt
示例2
 g 12 = δ α b i b k + 1 δ n k g g_{12}=\frac{\delta \alpha_{b_i b_{k+1}}}{\delta n_k^g} g12=δnkgδαbibk+1
 一看 n k g n_k^g nkg就知道又要找和旋转有关的量了。回顾递推公式,有
  ω = 1 2 ( ( ω b k + n k g − b k g ) + ( w b k + 1 + n k + 1 g − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))
  q b i b k + 1 = q b i b k ⊗ [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbibk+1=qbibk⊗[1,21ωδt]T
  a = 1 2 ( q b i b k ( a b k + n b k − b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21(qbibk(abk+nbk−bka)+qbibk+1(abk+1+nbk+1−bk+1a))
  α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 \alpha_{b_i b_{k+1}} = \alpha_{b_i b_{k}} + \beta_{b_i b_k} \delta t + \frac{1}{2}a \delta t^2 αbibk+1=αbibk+βbibkδt+21aδt2
 有
  g 12 = δ α b i b k + 1 δ n k g g_{12}=\frac{\delta \alpha_{b_i b_{k+1}}}{\delta n_k^g} g12=δnkgδαbibk+1
  g 12 = δ 1 2 a δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{2}a \delta t^2}{\delta n_k^g} g12=δnkgδ21aδt2
  a = 1 2 ( q b i b k ( a b k + n b k − b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 − b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21(qbibk(abk+nbk−bka)+qbibk+1(abk+1+nbk+1−bk+1a))
  g 12 = δ 1 4 q b i b k + 1 ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{4}q_{b_i b_{k+1}} (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=δnkgδ41qbibk+1(abk+1−bk+1a)δt2
 又因为
  q b i b k + 1 = q b i b k ⊗ [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbibk+1=qbibk⊗[1,21ωδt]T
 所以有
  g 12 = δ 1 4 q b i b k ⊗ [ 1 , 1 2 ω δ t ] T ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{4}q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=δnkgδ41qbibk⊗[1,21ωδt]T(abk+1−bk+1a)δt2
  ω = 1 2 ( ( ω b k + n k g − b k g ) + ( w b k + 1 + n k + 1 g − b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))
  g 12 = δ 1 4 q b i b k ⊗ [ 1 , 1 2 ( ω b k + 1 2 n k g ) δ t ] T ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{4}q_{b_i b_k} \otimes [1, \frac{1}{2} (\omega_b^k+\frac{1}{2}n_k^g)\delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=δnkgδ41qbibk⊗[1,21(ωbk+21nkg)δt]T(abk+1−bk+1a)δt2
  g 12 = 1 4 δ R b i b k exp  ( ( ( ω b k + 1 2 n k g ) δ t ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp(((\omega_b^k+\frac{1}{2}n_k^g)\delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibkexp(((ωbk+21nkg)δt)∧)(abk+1−bk+1a)δt2
  g 12 = 1 4 δ R b i b k ( exp  ( ( ω b k δ t ) ∧ ) ) ( exp  ( ( J r ( ω b k δ t ) 1 2 n k g δ t ) ∧ ) ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k} (\exp((\omega_b^k\delta t)^{\wedge}))(\exp((J_r(\omega_b^k\delta t)\frac{1}{2}n_k^g \delta t)^{\wedge}))(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibk(exp((ωbkδt)∧))(exp((Jr(ωbkδt)21nkgδt)∧))(abk+1−bk+1a)δt2
  g 12 = 1 4 δ R b i b k ( exp  ( ( J r ( ω b k δ t ) 1 2 n k g δ t ) ∧ ) ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k}(\exp((J_r(\omega_b^k\delta t)\frac{1}{2}n_k^g \delta t)^{\wedge}))(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibk(exp((Jr(ωbkδt)21nkgδt)∧))(abk+1−bk+1a)δt2
  g 12 = 1 4 δ R b i b k ( exp  ( ( 1 2 n k g δ t ) ∧ ) ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k}(\exp((\frac{1}{2}n_k^g \delta t)^{\wedge}))(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibk(exp((21nkgδt)∧))(abk+1−bk+1a)δt2
  g 12 = 1 4 δ R b i b k ( ( 1 2 n k g δ t ) ∧ ) ( a b k + 1 − b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k}((\frac{1}{2}n_k^g \delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12=41δnkgδRbibk((21nkgδt)∧)(abk+1−bk+1a)δt2
  g 12 = − 1 4 δ R b i b k ( a b k + 1 − b k + 1 a ) ∧ ( 1 2 n k g δ t ) δ t 2 δ n k g g_{12}=-\frac{1}{4} \frac{\delta R_{b_i b_k}(a_b^{k+1} - b_{k+1}^a)^{\wedge} (\frac{1}{2}n_k^g \delta t)\delta t^2}{\delta n_k^g} g12=−41δnkgδRbibk(abk+1−bk+1a)∧(21nkgδt)δt2
  g 12 = − 1 4 R b i b k ( a b k + 1 − b k + 1 a ) ∧ ( 1 2 δ t ) δ t 2 g_{12}=-\frac{1}{4} R_{b_i b_k}(a_b^{k+1} - b_{k+1}^a)^{\wedge} (\frac{1}{2} \delta t)\delta t^2 g12=−41Rbibk(abk+1−bk+1a)∧(21δt)δt2
  g 12 = − 1 8 R b i b k ( a b k + 1 − b k + 1 a ) ∧ ( δ t ) δ t 2 g_{12}=-\frac{1}{8} R_{b_i b_k}(a_b^{k+1} - b_{k+1}^a)^{\wedge} (\delta t)\delta t^2 g12=−81Rbibk(abk+1−bk+1a)∧(δt)δt2
Levenberg-Marquardt方法证明
Levenberg (1944) 和 Marquardt (1963) 先后对高斯牛顿法进行了改进,求解过程中引入了阻尼因子
  ( J T J + μ I ) Δ x l m = − J T f , μ > 0 (J^TJ+\mu I) \Delta x_{lm} = -J^Tf,\mu >0 (JTJ+μI)Δxlm=−JTf,μ>0
  F ( x ) = 1 2 ∑ i ( f i ( x ) ) 2 F(x)=\frac{1}{2} \sum_i (f_i(x))^2 F(x)=21i∑(fi(x))2
  J = δ f δ x J = \frac{\delta f}{\delta x} J=δxδf
  F ′ ( x ) = ( J T f ) T F'(x)=(J^Tf)^T F′(x)=(JTf)T
  F ′ ′ ( x ) = J T J F''(x)=J^T J F′′(x)=JTJ
求证
 J T J = V T Λ V J^TJ = V^T \Lambda V JTJ=VTΛV
  Δ x l m = − ∑ j = 1 n v j T F ′ T λ j + μ v j \Delta x_{lm} = -\sum_{j=1}^n \frac{v_j^T F'^T}{\lambda_j + \mu} v_j Δxlm=−j=1∑nλj+μvjTF′Tvj
 由原来的式子
  ( J T J + μ I ) Δ x l m = − J T f (J^TJ+\mu I) \Delta x_{lm} = -J^Tf (JTJ+μI)Δxlm=−JTf
 进行代换有
  ( V T Λ V + μ I ) Δ x l m = − J T f (V^T \Lambda V+\mu I) \Delta x_{lm} = -J^Tf (VTΛV+μI)Δxlm=−JTf
  ( V T Λ V + μ V T V ) Δ x l m = − J T f (V^T \Lambda V+\mu V^T V) \Delta x_{lm} = -J^Tf (VTΛV+μVTV)Δxlm=−JTf
  ( V T Λ V + V T μ V ) Δ x l m = − J T f (V^T \Lambda V+V^T\mu V) \Delta x_{lm} = -J^Tf (VTΛV+VTμV)Δxlm=−JTf
  ( V T Λ V + V T μ I V ) Δ x l m = − J T f (V^T \Lambda V+V^T\mu IV) \Delta x_{lm} = -J^Tf (VTΛV+VTμIV)Δxlm=−JTf
  ( V T ( Λ + μ I ) V ) Δ x l m = − J T f (V^T (\Lambda + \mu I) V) \Delta x_{lm} = -J^Tf (VT(Λ+μI)V)Δxlm=−JTf
 因为
  F ′ ( x ) = ( J T f ) T F'(x)=(J^Tf)^T F′(x)=(JTf)T
 故有
  ( V T ( Λ + μ I ) V ) Δ x l m = − F ′ T (V^T (\Lambda + \mu I) V) \Delta x_{lm} = -F'^T (VT(Λ+μI)V)Δxlm=−F′T
  V = [ v 1 , v 2 , . . . v n ] V = [v_1, v_2, ... v_n] V=[v1,v2,...vn]
 其中 v j v_j vj为列向量
  V T = [ v 1 T , v 2 T , . . . v n T ] T V^T = [v_1^T, v_2^T, ... v_n^T]^T VT=[v1T,v2T,...vnT]T
  Λ + μ I = [ λ 1 + μ λ 2 + μ λ 3 + μ . . . λ n + μ ] \Lambda + \mu I = \begin{bmatrix} \lambda_1+\mu & & & & \\ & \lambda_2+\mu & & & \\ & & \lambda_3+\mu & & \\ & & & ... & \\ & & & & \lambda_n+\mu \end{bmatrix} Λ+μI= λ1+μλ2+μλ3+μ...λn+μ 
 记为
  D i a g ( λ i + μ ) Diag(\lambda_i+\mu) Diag(λi+μ)
  V T D i a g ( λ i + μ ) V Δ x l m = − F ′ T V^TDiag(\lambda_i+\mu)V \Delta x_{lm} = -F'^T VTDiag(λi+μ)VΔxlm=−F′T
 得证
  Δ x l m = − ∑ j = 1 n v j T F ′ T λ j + μ v j \Delta x_{lm} = -\sum_{j=1}^n \frac{v_j^T F'^T}{\lambda_j + \mu} v_j Δxlm=−j=1∑nλj+μvjTF′Tvj