SCI一区级 | Matlab实现RIME-CNN-LSTM-Mutilhead-Attention多变量多步时序预测

SCI一区级 | Matlab实现RIME-CNN-LSTM-Mutilhead-Attention多变量多步时序预测

目录

    • SCI一区级 | Matlab实现RIME-CNN-LSTM-Mutilhead-Attention多变量多步时序预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现RIME-CNN-LSTM-Mutilhead-Attention霜冰算法优化卷积长短期记忆神经网络融合多头注意力机制多变量多步时间序列预测,开普勒算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数;
CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力。较小的卷积核可以捕获更细粒度的特征,而较大的卷积核可以捕获更宏观的特征。
LSTM神经元个数:LSTM是一种适用于序列数据的循环神经网络,其神经元个数决定了模型的复杂性和记忆能力。较多的LSTM神经元可以提高模型的学习能力,但可能导致过拟合。
学习率:学习率是训练深度学习模型时的一个关键超参数,它控制每次参数更新的步长。学习率过大可能导致模型不稳定和发散,学习率过小可能导致训练过慢或陷入局部最小值。
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
霜冰优化算法是2023年发表于SCI、中科院二区Top期刊《Neurocomputing》上的新优化算法,现如今还未有相关的优化算法应用文献。RIME主要对霜冰的形成过程进行模拟,将其巧妙地应用于算法搜索领域。

在这里插入图片描述

2.运行环境为Matlab2023a及以上,提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线);
3.excel数据集(负荷数据集),输入多个特征,输出单个变量,考虑历史特征的影响,多变量多步时间序列预测(多步预测即预测下一天96个时间点),main.m为主程序,运行即可,所有文件放在一个文件夹;

在这里插入图片描述

4.命令窗口输出SSE、RMSE、MSE、MAE、MAPE、R2、r多指标评价,适用领域:负荷预测、风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式:私信博主回复Matlab实现RIME-CNN-LSTM-Mutilhead-Attention多变量多步时序预测
%% 清除内存、清除屏幕
clc
clear
%% 导入数据
data = xlsread('负荷数据.xlsx');
rng(0)
%%  数据分析
daynum=30;                                             %% 数据量较大,选取daynum天的数据
step=96;                                               %% 多步预测
data =data(end-step*daynum+1:end,:);                 
W_data  = data(:,end)';                                %% 实际值输出:每天24小时,每小时4个采样点
%%  数据归一化
[features, ~] = mapminmax(Features, 0, 1);
[w_data, ps_output]  = mapminmax(W_data, 0, 1);
%%  数据平铺为4-D
LP_Features =  double(reshape(features,fnum,step,1,daynum));    %% 特征数据格式
LP_WindData  = double(reshape(w_data,step,1,1,daynum));      %% 实际数据格式%% 格式转换为cell
NumDays  = daynum;                                         %% 数据总天数为daynum天
for i=1:NumDaysFeaturesData{1,i} = LP_Features(:,:,1,i);
endfor i=1:NumDaysRealData{1,i} = LP_WindData(:,:,1,i);
end%% 划分数据
XTrain = FeaturesData(:,1:daynum-2);                         %% 训练集输入为 1-(daynum-2)天的特征
YTrain = RealData(:,2:daynum-1);                             %% 训练集输出为 2-(daynum-1)天的实际值        Best_rime = zeros(1, dim);Best_rime_rate = inf; % 用于最大化问题,请将此值改为 -inffor i = 1:dimRimepop(:, i) = lb(i) + rand(SearchAgents_no, 1) .* (ub(i) - lb(i));   % 初始种群endLb = lb .* ones(1, dim); % 下边界Ub = ub .* ones(1, dim); % 上边界it = 1; % 迭代次数Convergence_curve = zeros(1, Max_iter);Rime_rates = zeros(1, SearchAgents_no); % 初始化适应度值newRime_rates = zeros(1, SearchAgents_no);W = 5; % 软霜冰参数,在论文第4.3.1节中有详细讨论% 计算初始位置的适应度值for i = 1:SearchAgents_no[Rime_rates(1, i),Value{i},Net{i},Info{i}] = fobj(Rimepop(i, :)); % 计算每个搜索体的适应度值% 进行贪婪选择if Rime_rates(1, i) < Best_rime_rateBest_rime_rate = Rime_rates(1, i);Best_rime = Rimepop(i, :);bestPred = Value{i};bestNet = Net{i};bestInfo = Info{i};endend% 主循环while it <= Max_iterRimeFactor = (rand - 0.5) * 2 * cos((pi * it / (Max_iter / 10))) * (1 - round(it * W / Max_iter) / W); % 公式(3),(4),(5)的参数E = (it / Max_iter)^0.5; % 公式(6)newRimepop = Rimepop; % 记录新的种群normalized_rime_rates = normr(Rime_rates); % 公式(7)的参数for i = 1:SearchAgents_nofor j = 1:dim% 软霜冰搜索策略r1 = rand();if r1 < EnewRimepop(i, j) = Best_rime(1, j) + RimeFactor * ((Ub(j) - Lb(j)) * rand + Lb(j)); % 公式(3)end% 硬霜冰穿刺机制r2 = rand();if r2 < normalized_rime_rates(i)newRimepop(i, j) = Best_rime(1, j); % 公式(7)endendend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/606647.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录算法训练营第三十天|总结、332.重新安排行程、51.N皇后、37.解数独

代码随想录 (programmercarl.com) 总结 332.重新安排行程 欧拉通路和欧拉回路&#xff1a; 欧拉通路&#xff1a;对于图G来说&#xff0c;如果存在一条通路包含G的所有边&#xff0c;则该通路称为欧拉通路&#xff0c;也称欧拉路径。欧拉回路&#xff1a;如果欧拉路径是一条…

比较全面的vcruntime140_1.dll丢失的解决方法,4招搞定缺失的vcruntime140_1.dll

在平时使用电脑的过程中&#xff0c;许多人可能会碰到一个名为vcruntime140_1.dll的文件出现执行错误的问题&#xff0c;往往大家对此束手无策。针对这个问题&#xff0c;本文将向你解释vcruntime140_1.dll是什么&#xff0c;为何会发生这种无法执行代码的错误&#xff0c;以及…

互联网加竞赛 基于卷积神经网络的乳腺癌分类 深度学习 医学图像

文章目录 1 前言2 前言3 数据集3.1 良性样本3.2 病变样本 4 开发环境5 代码实现5.1 实现流程5.2 部分代码实现5.2.1 导入库5.2.2 图像加载5.2.3 标记5.2.4 分组5.2.5 构建模型训练 6 分析指标6.1 精度&#xff0c;召回率和F1度量6.2 混淆矩阵 7 结果和结论8 最后 1 前言 &…

MySQL 中的状态变量

文章目录 前言1. 连接相关1.1 连接线程1.2 连接异常1.3 最大连接数 2. Com 相关3. 临时表相关4. Table Cache 相关5. 缓冲池相关6. Redo log 相关7. 行锁相关8. 排序相关9. 查询相关10. 流量相关11. Binlog 相关 前言 本篇文章介绍一些 MySQL 中常用的监控指标&#xff0c;常见…

无人地磅系统|内蒙古中兴首创无人地磅和远程高效管理的突破

走进标杆企业&#xff0c;感受名企力量&#xff0c;探寻学习优秀企业领先之道。 本期要跟砼行们推介的标杆企业是内蒙古赤峰市砼行业的龙头企业&#xff1a;赤峰中兴首创混凝土搅拌有限责任公司&#xff08;以下简称为中兴首创&#xff09;。 中兴首创成立于2011年初&#xff…

uView time 时间格式

格式化时间 #timeFormat | date(timestamp, format "yyyy-mm-dd") 注意&#xff1a;1.7.9之前的版本只能传入秒或毫秒时间戳&#xff0c;date和timeFormat为同功能不同名函数&#xff0c;无论用哪个方法名&#xff0c;都是一样的。 该函数必须传入第一个参数&…

猫头虎分享已解决Bug || Go Error: cannot use str (type string) as type int in assignment

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通Golang》…

AI教我学编程之C#关键字

AI教我学编程系列学习第三课 — C#关键字 前言重点先知关键字分类保留字上下文关键字 对话AI首遇波澜调整指令第一次第二次第三次直到我提出如下指令 人工智能&#xff1f;阶段总结 知识拓展1、Ecma和ISO是什么&#xff1f;2、System&#xff0c;dllhost.exe&#xff0c;taskmg…

springboot(ssm生产管理ERP系统 wms出入库管理系统Java系统

springboot(ssm生产管理ERP系统 wms出入库管理系统Java系统 开发语言&#xff1a;Java 框架&#xff1a;ssm/springboot vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff1a;mysql 5.7&#xff08;或8.0&#xff09;…

7个Pandas绘图函数助力数据可视化

大家好&#xff0c;在使用Pandas分析数据时&#xff0c;会使用Pandas函数来过滤和转换列&#xff0c;连接多个数据帧中的数据等操作。但是&#xff0c;生成图表将数据在数据帧中可视化&#xff0c;通常比仅仅查看数字更有帮助。 Pandas具有几个绘图函数&#xff0c;可以使用它…

分布式锁相关问题(三)

Redis实战精讲-13小时彻底学会Redis 一、什么是分布式锁&#xff1f; 要介绍分布式锁&#xff0c;首先要提到与分布式锁相对应的是线程锁、进程锁。 l 线程锁&#xff1a;主要用来给方法、代码块加锁。当某个方法或代码使用锁&#xff0c;在同一时刻仅有一个线程执行该方法或该…

传统图像处理学习笔记更新中

文章目录 传统图像处理颜色空间高斯滤波腐蚀和膨胀开运算和闭运算如何求一张图片的均值?线性插值双线性插值仿射变换透视变换常见的边缘检测算子Sobel 算法Canny 算法Hough 变换原理(直线和圆检测)找轮廓(findCountours)单应性(homography)原理

软件测试|Linux基础教程:ln命令与软链接和硬链接

简介 在Linux系统中&#xff0c;ln命令是一个非常有用的工具&#xff0c;用于创建链接&#xff08;link&#xff09;&#xff0c;将一个文件或目录链接到另一个位置。链接允许一个文件或目录可以同时存在于多个位置&#xff0c;而不会占用额外的磁盘空间。ln命令支持创建硬链接…

TS内置的Readonly<T>

不要使用内置的Readonly<T>&#xff0c;自己实现一个。 泛型 Readonly<T> 会接收一个 泛型参数&#xff0c;并返回一个完全一样的类型&#xff0c;只是所有属性都会是只读 (readonly) 的。 也就是不可以再对该对象的属性赋值。 例如&#xff1a; interface Tod…

202312 青少年软件编程等级考试Scratch一级真题(电子学会)

2023年12月 青少年软件编程等级考试Scratch一级真题&#xff08;电子学会&#xff09; 试卷总分数&#xff1a;100分 试卷及格分&#xff1a;60 分 考试时长&#xff1a;60 分钟 第 1 题 单选题 观察下列每个圆形中的四个数&#xff0c;找出规律&#xff0c;在括…

用通俗易懂的方式讲解:2024 检索增强生成技术(RAG)研究进展

本篇内容1w字左右&#xff0c;稍微有点长&#xff0c;相对不容易理解&#xff0c;喜欢可以收藏、关注、点赞。 一、前言 在过去的一两年里&#xff0c;人工智能领域目睹了检索增强生成技术&#xff08;RAG&#xff09;的迅猛发展&#xff0c;这种技术结合了强大的语言模型与信…

程序员副业之AI情侣头像(手把手超详细完整全流程)

项目介绍 小黑今天给咱们分享个轻松简单的项目&#xff0c;每天不会超过半小时&#xff0c;就是用AI制作情侣头像&#xff0c;在抖音上变现。听起来是不是很科幻&#xff1f;但实际上效果杠杠的&#xff01; 最关键的是&#xff0c;收入方面&#xff0c;一单9块9&#xff0c;…

深入了解性能测试工具:优化应用性能的关键步骤

在当今数字化时代&#xff0c;应用程序性能是保持用户满意度和业务成功的关键因素之一。性能测试工具是开发和测试团队的宝贵资源&#xff0c;可以帮助识别和解决潜在的性能瓶颈&#xff0c;确保应用程序在各种负载条件下都能表现出色。本文将介绍性能测试工具的重要性、及它们…

计算机缺失vcomp120.dll文件怎么办?总结多种解决方法分享

在使用电脑过程中&#xff0c;难免会遇到各种问题&#xff0c;其中vcomp120.dll丢失问题就是其中之一。这个问题可能会给用户带来诸多不便&#xff0c;导致某些应用程序无法正常运行。在这篇文章中&#xff0c;我们将详细介绍vcomp120.dll文件的重要性&#xff0c;以及遇到丢失…

MySQL8.0更新的内容

官网地址&#xff1a;MySQL :: MySQL 8.0 Reference Manual :: 1.3 What Is New in MySQL 8.0 欢迎关注留言&#xff0c;我是收集整理小能手&#xff0c;工具翻译&#xff0c;仅供参考&#xff0c;笔芯笔芯. Mysql8.0参考手册 / 一般信息 /什么是在mysql8.0的新内容 1.3如何…