【AIGC-图片生成视频系列-6】SSR-Encoder:用于主题驱动生成的通用编码器

目录

一. 贡献概述

二. 方法详解

a) 训练阶段

b) 推理生成阶段:

三. 综合结果

四. 注意力可视化

五. 选择性主题驱动图像生成

六. 人体图像生成

七. 可推广到视频生成模型

八. 论文

九. 个人思考


稳定扩散(Stable Diffusion)模型可以让广泛的用户群轻松地根据文本提示生成图像。

但人们越来越感兴趣的领域是主题驱动生成,比如关注焦点从创建通用主题(例如“一只猫”)转移到生成特定实例(例如“这只猫”)。主题驱动定义可以见之前一篇文章DreamTuner(点击可跳转)。

今天要介绍的SSR-Encoder就是可以用于主题驱动生成的通用编码器。

一. 贡献概述

上文提到,人们对主题驱动越来越感兴趣。但通过制作完美的文本提示来生成所需的主题内容是一大难点,并且对大多数用户而言门槛略高。

分析已有的解决策略,可以发现:

  1. 主题驱动的图像生成任务通过从参考图像中学习主题,并生成符合身份和风格等特定概念的图像。

  2. 一种方法是涉及test-time微调,虽然有效,但需要大量的计算资源来学习每个新主题。

  3. 一种方法是将参考图像编码到图像嵌入中以绕过微调成本。但是基于编码器的模型通常需要与基础扩散模型联合训练,限制了它们的通用性。

  4. 一个同期工作 IP-adapter 通过学习投影将图像信息注入 U-Net 来解决微调成本和通用性,避免了对基础的文本到图像模型进行微调,从而拓宽了在个性化模型中的应用。

但问题是:

  1. 尽管之前的策略都有进步,但经常被忽视的一个关键方面是精准提取主题最丰富的信息表示

  2. 图像是主题、背景和风格的复杂组合,因此专注于有效表现主题的最关键元素至关重要。

如何解决:

  1. 文中提出的SSR-Encoder是一种新颖的架构,旨在有选择地从单个或多个参考图像中捕获任何主题

  2. SSR-Encoder响应各种查询模式,包括文本和掩码,无需测试时微调

  3. SSR-Encoder结合了 Token-to-Patch Aligner(将查询输入与图像补丁对齐)和保留细节主题编码器(用于提取和保留主题的精细特征),从而生成主题嵌入。这些嵌入与原始文本嵌入结合使用,决定了生成过程。

  4. SSR-Encoder以其模型通用性和效率为特点,适用于一系列自定义模型和控制模块。通过嵌入一致性正则化损失来改进训练。

  5. 大量实验证明了SSR-Encoder在多功能和高质量图像生成方面的有效性,表明了其广泛的适用性。

图片

SSR 编码器是一种模型通用编码器,它能够根据所选的图像表示来指导任何定制的扩散模型,用于单个主题驱动的图像生成(顶部分支)从不同图像(中间分支)生成多个主题驱动的图像通过文本查询或掩码查询,无需任何额外的测试时间微调此外,我们的 SSR 编码器还可以应用于具有附加控制的可控生成(底部分支)。

二. 方法详解

图片

a) 训练阶段

图片

  1. 训练时候, SSR-Encoder的输入是参考图像以及查询输入(掩膜查询或者文字查询)。

  2. SSR-Encoder的编码输出注入基础T2I模型,做法类似IPAdapter。

  3. 可以与任何自定义扩散模型集成,而无需测试时微调。

  4. 训练过程固定文本编码器,VAE和基础模型的参数,只训练SSR-Encoder。

b) 推理生成阶段:

图片

  1. 给定一个查询文本-图像对,SSR-Encoder采用token-to-patch aligner来突出显示查询中参考图像中的选择性区域。

  2. 同时,它通过保留细节的主题编码器提取主题的细粒度细节,通过token-to-patch aligner投影多尺度视觉嵌入。

  3. 然后,采用主题条件生成来生成具有高保真度和创造性可编辑性的特定主题。

三. 综合结果

SSR-Encoder 在不同生成能力下的结果,支持两种查询模式,并且适用于各种任务,包括单主体和多主体条件生成

其多功能性扩展到与其他定制模型的集成以及与现成 ControlNet 的兼容性。

四. 注意力可视化

注意力图的可视化

五. 选择性主题驱动图像生成

从单个图像中选择不同的主题以进行重新生成图像。

六. 人体图像生成

尽管 SSR-Encoder没有接受过特定领域设置(例如人脸)的训练,但它已经能够捕获对象的复杂细节

利用 OpenImages 数据集中的人脸图像作为生成人体图像的参考图像。为了更好地说明结果,还使用了两位名人的图像作为参考。

七. 可推广到视频生成模型

SSR-Encoder不仅具有足够的通用性,可以适应各种自定义模型和可控性模块,而且还可以有效地应用于视频生成,与视频生成模型无缝集成

下面演示了将 SSR-Encoder与 Animatediff 相结合的影响。尽管没有接受过视频数据的训练,该方法可以完美地与 Animatediff 结合起来,生成与参考图像保持一致的角色身份的视频

八. 论文

论文:https://arxiv.org/pdf/2312.16272.pdf

九. 个人思考

这个项目挺有意义的,可以用极少代价即可固定特定主题,扩展文生图和图生视频的生成能力上限,还能充分利用基础模型。整体的思路有点类似IPAdapter。等代码公开后可以对比分析一波。


欢迎加入AI杰克王的免费知识星球,海量干货等着你,一起探讨学习AIGC!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/603336.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python豆瓣实例,抓取多页数据-应用到知识点:随时数,xpath,间隔请求sleep

源代码: <!DOCTYPE html> <html lang="zh-CN" class="ua-windows ua-webkit"> <head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta name="renderer" content=&q…

Calibre PEX Hspice Netlist提取步骤(数模芯片提取spice netlist流程)

在数模混合芯片中&#xff0c;通常模拟需要数字模块通过calibre工具来提取Hspice netlist用于功耗仿真。注意这里的spice netlist和做Calibre的spice netlist是不太一样的。 另外在做calibre pex时需要确保当前的design LVS已经pass。否则功耗仿真可能会不准。 Calibre LVS常…

八. 实战:CUDA-BEVFusion部署分析-spconv原理

目录 前言0. 简述1. 举例分析spconv的计算流程2. 导出带有spconv网络的onnx需要考虑的事情总结下载链接参考 前言 自动驾驶之心推出的 《CUDA与TensorRT部署实战课程》&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考 本次课程我们来学习下课程第八章——实战&a…

【数据库原理】(13)视图的使用

文章目录 一.定义和删除视图1.建立视图2.删除视图 二.查询视图视图查询的基本操作视图查询的内部机制查询转换的注意事项视图查询的限制 三.更新视图1.插入视图数据2.删除视图数据3.修改视图数据可更新性的限制 视图&#xff08;View&#xff09; 是一种虚拟的表&#xff0c;它…

Next.js 第一次接触

因为需要整个漂亮的在线文档&#xff0c;所以接触了next.js&#xff0c;因为对前端js本身不够熟悉&#xff0c;别说对react.js 又不会&#xff0c;时间又不允许深入研究&#xff0c;所以&#xff0c;为了加一个导航菜单&#xff0c;极其痛苦。 有点小bug&#xff0c;不过不影响…

学习笔记:C++之 switch语句

Switch语句 作用&#xff1a;执行多条件分支语句 语法&#xff1a; switch&#xff08;表达式&#xff09;{ case 结果1&#xff1a;执行语句&#xff1b;break&#xff1b; case 结果2&#xff1a;执行语句&#xff1b;break&#xff1b; ... default&#xff1a;执行语句&a…

Golang leetcode142 环形链表 暴力map 快慢指针法

文章目录 环形链表 leetcode142暴力遍历 map哈希记录快慢指针法 环形链表 leetcode142 该题目要求找到入环的第一个节点 我们可以通过map进行记录&#xff0c;没到新的节点查询是否经过原有节点 入环节点&#xff0c;上两个节点的next相同 若有入环节点&#xff0c;则一定能检…

如何用python实现一个简单的单向链表?

实现一个简单的单向链表涉及两个基本的构建块&#xff1a;节点&#xff08;Node&#xff09;和链表&#xff08;LinkedList&#xff09;。下面是详细步骤和解释&#xff1a; 1. 实现节点&#xff08;Node&#xff09; 链表中的每个节点通常包含两部分&#xff1a;存储的数据&…

Flutter 图片和资源的高效使用指南

文章目录 指定资源什么是 [pubspec.yaml](https://dart.cn/tools/pub/pubspec) 文件 图片图片常用的配置属性加载本地图片通过 pubspec.yml 文件进行配置图片目录使用 Image.asset 小部件加载本地图片 加载网络图片通过 Image.network小部件加载网络图片&#xff1a;使用Image.…

LeCode:(606. 根据二叉树创建字符串)

题目链接 本体的难点&#xff1a; 什么时候去打印左右括号&#xff1f;什么时候省略&#xff1f; 解题过程&#xff1a;通过观察看到&#xff0c;每次遍历结点之前&#xff0c;打印了一个左括号&#xff1b;遍历到叶子&#xff0c;叶子的左右也要打印出括号来&#xff08;先…

linux虚拟机环境快速搭建redis5.x版本的主从集群总结

原创/朱季谦 我在阿里云服务器上曾参与过公司redis集群的搭建&#xff0c;但时间久了&#xff0c;都快忘记当时的搭建过程了&#xff0c;故而决定在虚拟机centOS 7的环境&#xff0c;自行搭建一套redis5.x版本的集群&#xff0c;该版本集群的搭建比较方便&#xff0c;不用再像…

实现电子邮件自动化的实用技巧与指南

如何实现电子邮件自动化&#xff1f;一般可以通过规则和过滤器、自动回复、定时发送、快捷键和模板、团队邮箱等方法来实现。 一、什么是电子邮件自动化 电子邮件自动化是一种根据特定条件在适当时机发送正确信息的过程。这些条件可以是时间表、触发器或在您的电子邮件自动化工…

AVL树介绍以及代码实现

二叉搜索树的查找和删除虽然最优情况下能够做到 O(logN) 的级别&#xff0c;但是在一些特殊情况下&#xff0c;它的查找速度只能到达 O(N)级别&#xff0c;比如数据按顺序插入&#xff0c;那么就一定是一棵单边树。 为了针对这种情况&#xff0c;俄罗斯的两位数学家&#xff1a…

android 倒计时控件

效果&#xff1a;&#xff08;可不设置 之前、之后文字&#xff09; /*** 倒计时秒数** desc : 时分秒倒计时view* * 布局里引用后&#xff0c;* private fun testMethod(){* binding.test.setCDownStarText("之前的文字")* binding.test.setCDo…

在数据库造数据发现的bug也是bug

上个月&#xff0c;我和开发小哥讨论过一个问题&#xff0c;开发小哥专门提醒我&#xff0c;页面上新增功能尽可能在前端造一些数据去测试&#xff0c;如果直接从数据库里插入的数据&#xff0c;定位问题还是有些说不清楚。 讨论的过程和细节就是以下的对话内容&#xff1a; …

【Sublime Text】| 02——常用插件安装及配置

系列文章目录 【Sublime Text】| 01——下载软件安装并注册 【Sublime Text】| 02——常用插件安装及配置 失败了也挺可爱&#xff0c;成功了就超帅。 文章目录 1. 汉化2. 更换颜色主题3. 更改编码插件—ConvertToUTF84. 对齐插件—Alignment5. 括号高亮插件—BracketHighligh…

网络嗅探器的设计与实现(2024)-转载

1.题目描述 参照 raw socket 编程例子&#xff0c;设计一个可以监视网络的状态、数据流动情况以及网络上传输 的信息的网络嗅探器。 2.运行结果 3.导入程序需要的库 请参考下面链接: 导入WinPcap到Clion (2024)-CSDN博客 4.参考代码 #define HAVE_REMOTE #define LINE_LEN …

XSKY SDS 产品率先获得 OceanBase V4 新版本认证

近日&#xff0c;北京奥星贝斯科技有限公司&#xff08;简称&#xff1a;OceanBase&#xff09;与北京星辰天合科技股份有限公司&#xff08;简称&#xff1a;XSKY 星辰天合&#xff09;顺利完成产品兼容性认证。 XSKY 的高性能全闪存储以及混闪存储&#xff0c;与 OceanBase V…

ELement UI时间控件el-date-picker误差8小时解决办法

一、问题描述&#xff1a; 在项目中引用了elementui中的date-picker组件&#xff0c;选中的时间跟实际相差八小时&#xff0c;且格式不是自己想要的格式 <el-date-pickertype"date"placeholder"选择日期"format"yyyy/M/d"v-model"form…

Java面试之集合篇

前言 本篇主要总结JAVA面试中关于集合相关的高频面试题。本篇的面试题基于网络整理以及自己的总结编辑。在不断的完善补充哦。欢迎小伙伴们在评论区发表留言哦&#xff01; 1、基础 1.1、Java 集合框架有哪些&#xff1f; Java 集合框架&#xff0c;大家可以看看 《Java 集…