深度学习3. 强化学习-Reinforcement learning | RL

强化学习是机器学习的一种学习方式,它跟监督学习、无监督学习是对应的。本文将详细介绍强化学习的基本概念、应用场景和主流的强化学习算法及分类。

目录

什么是强化学习?

强化学习的应用场景

强化学习的主流算法

强化学习(reinforcement learning)


什么是强化学习?

强化学习并不是某一种特定的算法,而是一类算法的统称。

如果用来做对比的话,他跟监督学习,无监督学习 是类似的,是一种统称的学习方式。

强化学习算法的思路非常简单,以游戏为例,如果在游戏中采取某种策略可以取得较高的得分,那么就进一步「强化」这种策略,以期继续取得较好的结果。这种策略与日常生活中的各种「绩效奖励」非常类似。我们平时也常常用这样的策略来提高自己的游戏水平。

在 Flappy bird 这个游戏中,我们需要简单的点击操作来控制小鸟,躲过各种水管,飞的越远越好,因为飞的越远就能获得更高的积分奖励。

这就是一个典型的强化学习场景:

  • 机器有一个明确的小鸟角色——代理
  • 需要控制小鸟飞的更远——目标
  • 整个游戏过程中需要躲避各种水管——环境
  • 躲避水管的方法是让小鸟用力飞一下——行动
  • 飞的越远,就会获得越多的积分——奖励

强化学习和监督学习、无监督学习 最大的不同就是不需要大量的“数据喂养”

而是通过自己不停的尝试来学会某些技能。

强化学习的应用场景

强化学习目前还不够成熟,应用场景也比较局限。最大的应用场景就是游戏了。

游戏

2016年:AlphaGo Master 击败李世石,使用强化学习的 AlphaGo Zero 仅花了40天时间,就击败了自己的前辈 AlphaGo Master。

2019年1月25日:AlphaStar 在《星际争霸2》中以 10:1 击败了人类顶级职业玩家

2019年4月13日:OpenAI 在《Dota2》的比赛中战胜了人类世界冠军。

机器人

机器人很像强化学习里的「代理」,在机器人领域,强化学习也可以发挥巨大的作用。

其他

强化学习在推荐系统,对话系统,教育培训,广告,金融等领域也有一些应用:

强化学习的主流算法

免模型学习(Model-Free) vs 有模型学习(Model-Based)

在介绍详细算法之前,我们先来了解一下强化学习算法的2大分类。这2个分类的重要差异是:智能体是否能完整了解或学习到所在环境的模型

有模型学习(Model-Based)对环境有提前的认知,可以提前考虑规划,但是缺点是如果模型跟真实世界不一致,那么在实际使用场景下会表现的不好。

免模型学习(Model-Free)放弃了模型学习,在效率上不如前者,但是这种方式更加容易实现,也容易在真实场景下调整到很好的状态。所以免模型学习方法更受欢迎,得到更加广泛的开发和测试。

除了免模型学习和有模型学习的分类外,强化学习还有其他几种分类方式:

  • 基于概率 VS 基于价值
  • 回合更新 VS 单步更新
  • 在线学习 VS 离线学习

强化学习(reinforcement learning)

又称再励学习、评价学习,是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用。

但在传统的机器学习分类中没有提到过强化学习,而在连接主义学习中,把学习算法分为三种类型,

非监督学习(unsupervised learning)、监督学习(supervised leaning)和强化学习。

强化学习(RL)是机器学习的一个领域,涉及软件代理如何在环境中采取行动以最大化一些累积奖励的概念。该问题由于其一般性,在许多其他学科中得到研究,如博弈论,控制理论,运筹学,信息论,基于仿真的优化,多智能体系统,群智能,统计和遗传算法。。在运筹学和控制文献中,强化学习被称为近似动态规划或神经动态规划。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/57535.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css 分割线中间带文字

效果图 代码块&#xff08;自适应&#xff09; <div class"line"><span class"text">我是文字</span></div>.line{height:0;border-top:1px solid #000;text-align:center;}.text{position:relative;top:-14px;background-color:#…

C语言(第三十二天)

1. 递归是什么&#xff1f; 递归是学习C语言函数绕不开的一个话题&#xff0c;那什么是递归呢&#xff1f; 递归其实是一种解决问题的方法&#xff0c;在C语言中&#xff0c;递归就是函数自己调用自己。 写一个史上最简单的C语言递归代码&#xff1a; #include <stdio.h>…

2023.8.25 关于 Selenium 常用 API 详解

目录 引言 打开页面 查找页面元素 输入文本 点击操作 提交操作 清除文本 获取文本和属性值 ​编辑 选择多个元素 获取页面标题和URL 等待操作 浏览器操作 多层框架定位 窗口操作 屏幕截图 下拉框元素选择操作 ​编辑 执行脚本 文件上传 引言 本文讲的所有…

广州华锐互动:VR垃圾分类虚拟科普系统让学习过程更加丰富有趣

在我们的日常生活中&#xff0c;垃圾分类已成为一项重要的公民责任。然而&#xff0c;由于缺乏对垃圾分类的深入理解和相关知识&#xff0c;许多人在实践中往往感到困惑和挫败。为了解决这个问题&#xff0c;一种创新的解决方案应运而生&#xff1a;垃圾分类VR虚拟仿真教学系统…

linux切换到root没有conda环境

这个错是因为 没有将anaconda添加到环境变量 export PATH"/home/tao/anaconda3/bin:$PATH"然后 source ~/.bashrc或者写入 nano ~/.bashrc在文件的末尾添加以下行 export PATH"/home/tao/anaconda3/bin:$PATH"再 source ~/.bashrc就可以了

git各类问题处理收集

一、pull Git拉取失败 Your local changes would be overwritten by merge.Commit, stash or revert them to proceed 1.通过VCS -> Git -> Stash Changes&#xff0c;将本地的所有改动暂存到本地仓库。 这一步执行后会隐藏本地的所有改动 2.pull 3.如果想把自己修改的部…

python爬虫-使用selenium自动登录微博

环境准备&#xff1a;anaconda、pycharm编辑器、chromedriver(记得下载) 首先查看本地anaconda的python环境和selenium版本号(不同版本的api接口可能不同) conda list python输出 # Name Version Build Channel ipython …

MySQL - 表空间碎片整理方法

MySQL数据库中的表在进行了多次delete、update和insert后&#xff0c;表空间会出现碎片。定期进行表空间整理&#xff0c;消除碎片可以提高访问表空间的性能。 检查表空间碎片 下面这个实验用于验证进行表空间整理后对性能的影响&#xff0c;首先检查这个有100万记录表的大小&…

2023年7月京东空气净化器行业品牌销售排行榜(京东运营数据分析)

随着科技发展&#xff0c;智能家具在日常生活中出现的频率越来越高&#xff0c;许多曾经不被关注的家电也出现在其中&#xff0c;包括近年来逐渐兴起的空气净化器。伴随人们对自身健康的重视度越来越高&#xff0c;作为能够杀灭空气污染物、有效提高空气清洁度的产品&#xff0…

iOS如何获取设备型号的最新方法总结

每一种 iOS 设备型号都有对应的一个或多个硬件编码/标识符&#xff0c;称为 device model 或者叫 machine name 通常的做法是&#xff0c;先获取设备的 device model 值&#xff0c;再手动映射为具体的设备型号&#xff08;或者直接把 device model 值传给后端&#xff0c;让后…

怎样快速选择正确的可视化图表?

数据可视化的图表类型十分丰富&#xff0c;好的图表可以有效、清晰地呈现数据的信息。对于用户而言&#xff0c;选择正确的图表是十分关键的&#xff0c;不仅可以达到“一图胜千言”的效果&#xff0c;而且会直接影响分析的结果。 用户选择正确的数据可视化图表前&#xff0c;…

Android学习之路(10) Bundle

Bundle的概念理解 Bundle经常出现在以下场合&#xff1a; Activity状态数据的保存与恢复涉及到的两个回调&#xff1a;void onSaveInstanceState (Bundle outState)、void onCreate (Bundle savedInstanceState)Fragment的setArguments方法&#xff1a;void setArguments (Bu…

RSA和RSA2公钥、私钥的生成

生成RSA公钥、私钥 在特定目录生成SSH密钥对 ## -t rsa指定密钥类型为RSA&#xff0c; -f 后指定对应目录和文件名 ssh-keygen -t rsa -f /root/niwanjia/id_rsa 生成RSA2公钥、私钥 RSA2是一种被使用广泛的非对称加密算法。 在linux环境下执行 openssl OpenSSL> genr…

基于云原生网关的流量防护实践

作者&#xff1a;涂鸦 背景 在分布式系统架构中&#xff0c;每个请求都会经过很多层处理&#xff0c;比如从入口网关再到 Web Server 再到服务之间的调用&#xff0c;再到服务访问缓存或 DB 等存储。在下图流量防护体系中&#xff0c;我们通常遵循流量漏斗原则进行流量防护。…

浅谈基于vue3+element二次封装el-upload组件

闲话少说&#xff0c;先上二次封装el-upload代码 <template><div><el-uploadclass"upload-demo"ref"uploadImgRef"action"#":show-file-list"false":auto-upload"false"accept".png, .jpg, .gif":…

论文阅读_模型结构_LoRA

name_en: LoRA: Low-Rank Adaptation of Large Language Models name_ch: LORA&#xff1a;大语言模型的低阶自适应 paper_addr: http://arxiv.org/abs/2106.09685 date_read: 2023-08-17 date_publish: 2021-10-16 tags: [‘深度学习’,‘大模型’] author: Edward J. Hu cita…

自然语言处理(三):基于跳元模型的word2vec实现

跳元模型 回顾一下第一节讲过的跳元模型 跳元模型&#xff08;Skip-gram Model&#xff09;是一种用于学习词向量的模型&#xff0c;属于Word2Vec算法中的一种。它的目标是通过给定一个中心词语来预测其周围的上下文词语。 这节我们以跳元模型为例&#xff0c;讲解word2vec的…

java中的序列化和反序列化

1、序列化是干啥用的&#xff1f; 序列化的原本意图是希望对一个java对象做一下“变换”&#xff0c;变成字节序列&#xff0c;这样一来方便持久化存储到磁盘&#xff0c;另外变换成字节序列也更方便在网络运输和传播&#xff0c;所以概念上很好理解&#xff1a; 序列化&…

EasyExcel导出复杂表格到邮箱

EasyExcel导出复杂表格到邮箱 📔 千寻简笔记介绍 千寻简笔记已开源,Gitee与GitHub搜索chihiro-notes,包含笔记源文件.md,以及PDF版本方便阅读,且是用了精美主题,阅读体验更佳,如果文章对你有帮助请帮我点一个Star~ 更新:支持在线阅读文章,根据发布日期分类。 文章…

python怎么提取视频中的音频

目录 操作步骤 1. 安装MoviePy库&#xff1a; 2. 导入MoviePy库和所需的模块&#xff1a; 3. 提取音频&#xff1a; 可能遇到的问题 1. 编解码器支持&#xff1a; 2. 依赖项安装&#xff1a; 3. 文件路径问题&#xff1a; 4. 内存消耗&#xff1a; 5. 输出文件大小&a…