主要原因:
1.人工智能适应Python的编程语言。
2.人工智能需要利用Python的高层语言,实现可移植性、面向对象、可扩展性、可嵌入型等功能,来实现人机交流。
Python:是一种面向对象的解释型计算机程序设计语言。
Python的开发生态成熟,有很多库可以用
Python灵活的语法还使得包括文本操作、list/dict comprehension等非常实用的功能非常容易高效实现(bbs.cnitedu.cn),配合lambda等使用更是方便。这也是Python良性生态背后的一大原因。
相比而言,Lua虽然也是解释语言,甚至有LuaJIT这种神器加持,但其本身很难做到Python这样,一是因为有Python这个前辈占领着市场份额,另一个也因为它本身种种反常识的设计(比如全局变量)。不过借着Lua-Python bridge和Torch的东风,Lua似乎也在寄生兴起。
Python效率超高
解释语言的发展已经大大超过许多人的想象。很多比如list comprehension的语法糖都是贴近内核实现的。除了JIT之外,还有Cython可以大幅增加运行效率。
最后,得益于Python对C的接口,很多像gnumpy, theano这样高效、Python接口友好的库可以加速程序的运行,在强大团队的支撑下,这些库的效率可能比一个不熟练的程序员用C写一个月调优的效率还要高。