list下界_下界理论

list下界

下界理论 (Lower Bound Theory)

Lower bound (L(n)) is a property of the specific problem i.e. the sorting problem, matrix multiplication not of any particular algorithm solving that problem.

下界(L(n))是特定问题(即排序问题)的矩阵,不是解决该问题的任何特定算法的矩阵乘法。

Lower bound theory says that no algorithm can do the job in fewer than that of (L (n)) times the units for arbitrary inputs i.e. that for every comparison based sorting algorithm must take at least L(n) time in the worst case.

下界理论说,没有一种算法能以少于任意输入的单位(L(n))倍的时间完成这项工作,也就是说,在最坏的情况下,每个基于比较的排序算法必须至少花费L(n)时间。

L(n) is the minimum over all possible algorithm which is maximum complete.

L(n)是所有可能算法中的最小值,而最大值是最大完成度。

Trivial lower bounds are used to yield the bound best option is to count the number of item in the problems input that must be processed and a number of output items that need to be produced.

琐碎的下限用于产生绑定最佳选择是计算问题输入中必须处理的项目数和需要产生的输出项数。

The lower bound theory is the technique that has been used to establish the given algorithm in the most efficient way which is possible. This is done by discovering a function g(n) that is a lower bound on the time that any algorithm must take to solve the given problem. Now if we have an algorithm whose computing time is the same order as g(n), then we know that asymptotically we cannot do better.

下限理论是一种已被用来以可能的最有效方式建立给定算法的技术。 这是通过发现一个函数g(n)来完成的,该函数在任何算法解决给定问题所需的时间上都有一个下限。 现在,如果我们有一种算法,其计算时间与g(n)相同 ,那么我们知道渐近地我们不能做得更好。

If f(n) is the time for some algorithm, then we write f(n) = Ω(g(n)) to mean that g(n) is the lower bound of f(n). This equation can be formally written, if there exists positive constants c and n0 such that |f(n)| >= c|g(n)| for all n > n0. In addition for developing lower bounds within the constant factor, we are more conscious of the fact to determine more exact bounds whenever this is possible.

如果f(n)是某种算法的时间,则我们将f(n)=Ω(g(n))表示为g(n)f(n)下限 。 如果存在正常数cn0使得| f(n)|成立 ,则该方程式可以正式写成 > = c | g(n)| 对于所有n> n0 。 除了在恒定因子内建立下界外,我们更意识到在可能的情况下确定更精确界限的事实。

Deriving good lower bounds is more difficult than devising efficient algorithms. This happens because a lower bound states a fact about all possible algorithms for solving a problem. Generally, we cannot enumerate and analyze all these algorithms, so lower bound proofs are often hard to obtain.

与设计有效的算法相比,得出良好的下界更加困难。 之所以会发生这种情况,是因为下限指出了所有可能解决问题的算法的事实。 通常,我们无法枚举和分析所有这些算法,因此通常很难获得下界证明。

The proofing techniques that are useful for obtaining lower bounds are:

对获得下限有用的校对技术是:

  1. Comparison trees:

    比较树:

    Comparison trees are the computational model useful for determining lower bounds for sorting and searching problems.

    比较树是用于确定排序和搜索问题下限的计算模型。

  2. Oracles and adversary arguments:

    Oracle和对手的论点:

    One of the techniques that are important for obtaining lower bounds consists of making the use of an oracle

    获得下界的重要技术之一是使用预言

  3. Lower bounds through reduction:

    通过缩减下界:

    This is a very important technique of lower bound, This technique calls for reducing the given problem for which a lower bound is already known.

    这是一个非常重要的下限技术。该技术要求减少已知下限的给定问题。

  4. Techniques for the algebraic problem:

    代数问题的技术:

    Substitution and linear independence are two methods used for deriving lower bounds on algebraic and arithmetic problems. The algebraic problems are operation on integers, polynomials, and rational functions.

    代换和线性独立性是用于推导代数和算术问题下界的两种方法。 代数问题是对整数,多项式和有理函数的运算。

翻译自: https://www.includehelp.com/algorithms/lower-bound-theory.aspx

list下界

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/543812.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac OSX 安装nvm(node.js版本管理器)

我的系统 1.打开github官网https://github.com/,输入nvm搜索,选择creationix/nvm,打开 2.找到Install script,复制 curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.29.0/install.sh | bash . 3. 打开终端&#xf…

HTML中的类属性

The class attribute in HTML is used to specify or set a single or multiple class names to an element for an HTML and XHTML elements. Its majorly used to indicate a class in a style sheet. HTML中的class属性用于为HTML和XHTML元素指定或设置一个元素名称或多个类…

关于HTML5标签不兼容(IE6~8)

HTML5的语义化标签以及属性&#xff0c;可以让开发者非常方便地实现清晰的web页面布局&#xff0c;加上CSS3的效果渲染&#xff0c;快速建立丰富灵活的web页面显得非常简单。 比较常用的HTML5的新标签元素有&#xff1a; <header>定义页面或区段的头部&#xff1b;<na…

zzz,zzz,zz9_ZZZ的完整形式是什么?

zzz,zzz,zz9ZZZ&#xff1a;睡觉&#xff0c;无聊&#xff0c;累 (ZZZ: Sleeping, Bored, Tired) ZZZ is an abbreviation of "Sleeping, Bored, Tired". ZZZ是“睡觉&#xff0c;无聊&#xff0c;累了”的缩写 。 It is an expression, which is commonly used in …

uboot启动 及命令分析(3)

u-boot命令 先贴一个重要结构,位于uboot/include/command.h,这个结构代表每个uboot命令 struct cmd_tbl_s { char *name; /* Command Name */ int maxargs; /* maximum number of arguments*/ int repeatable;/* autorepeat allowed? */ /* Implem…

Mozilla开源了VR框架A-Frame

Mozilla创建并开源了A-Frame&#xff0c;这是一个用于在桌面浏览器、智能手机和Oculus Rift上创建VR场景的框架。\\A-Frame是一个在浏览器中创建VR体验的开源框架。该框架由Mozilla的MozVR团队创建和开发。A-Frame使用了一个在游戏开发中经常使用的“实体-组件&#xff08;Enti…

css网格_CSS网格容器

css网格CSS | 网格容器 (CSS | Grid Containers) There are numerous ways to display our list items or elements. For instance, we can display them in the navigation bar, in a menu bar and whatnot. Well, it would be right to say that there are many more such me…

c ++向量库_在C ++中对2D向量进行排序

c 向量库As per as a 2D vector is concerned its a vector of a 1D vector. But what we do in sorting a 1D vector like, 就2D向量而言&#xff0c;它是1D向量的向量 。 但是我们在对一维向量进行排序时所做的工作 sort(vector.begin(),vector.end());We cant do the same …

监听文本框数据修改,特别是微信等客户端直接选择粘贴修改

2019独角兽企业重金招聘Python工程师标准>>> // 手机号码信息加载验证 $(input).bind(input propertychange, function() { initPage.checkName(); }); 转载于:https://my.oschina.net/u/1579617/blog/550488

SSIA的完整形式是什么?

SSIA&#xff1a;主题说明一切 (SSIA: Subject Says It All) SSIA is an abbreviation of "Subject Says It All". SSIA是“主题说明一切”的缩写。 It is an expression, which is commonly used in the Gmail platform. It is written in the subject of the mail…

服务器控件转换成HTML

服务器控件转换成HTML<asp:Label ID"Label1" runat"server" Text"I am label"><asp:Literal ID"Literal1" runat"server" Text"I am a literal"><asp:Panel ID"Panel1" runat"serv…

Eratosthenes筛

什么是Eratosthenes筛&#xff1f; (What is Sieve of Eratosthenes?) Sieve of Eratosthenes is an ancient algorithm of finding prime numbers for any given range. Its actually about maintaining a Boolean table to check for corresponding prime no. Eratosthenes的…

微信iOS多设备多字体适配方案总结

一、背景 2014下半年&#xff0c;微信iOS版先后适配iPad, iPhone6/6plus。随着这些大屏设备的登场&#xff0c;部分用户觉得微信的字体太小&#xff0c;但也有很多用户不喜欢太大的字体。为了满足不同用户的需求&#xff0c;我们做了全局字体设置功能&#xff0c;在【设置-通用…

python矩阵中插入矩阵_Python | 矩阵的痕迹

python矩阵中插入矩阵The sum of diagonal elements of a matrix is commonly known as the trace of the matrix. It is mainly used in eigenvalues and other matrix applications. In this article, we are going to find the trace of a matrix using inbuilt function nu…

TOP命令监视系统任务及掩码umask的作用

top 命令使用方法及參数。 top 选择參数 參数&#xff1a; -b 以批量模式执行。但不能接受命令行输入&#xff1b;-c 显示命令行&#xff0c;而不不过命令名。-d N 显示两次刷新时间的间隔&#xff0c;比方 -d 5&#xff0c;表示两次刷新间隔为5秒&#xff1b;-i 禁止显示空暇…

python点线图_Python | 点线图

python点线图A mixture of dot and line plot is called a Dot-Line plot. Each dot is connected through a line and it is the next version of the line plot. It maintains the discrete property of the points and also represents the correlation between consecutive…

Android Studio导入工程的正确姿势

为什么80%的码农都做不了架构师&#xff1f;>>> 如果你有很好的网络环境 好的网络环境&#xff0c;这里不是指&#xff1a;我家网速带宽100M&#xff0c;电信的光纤接入。 而是&#xff1a;能翻墙。因为如果本机的gradle和将要导入的工程版本不匹配&#xff0c;Stu…

BBIAF的完整形式是什么?

BBIAF&#xff1a;回来几场 (BBIAF: Be Back In A Few) BBIAF is an abbreviation of "Be Back In A Few". BBIAF是“几回去”的缩写 。 It is an expression, which is commonly used in messaging or chatting on social media networking sites like Facebook, …

为什么年轻人挣得很多还是穷?北上广深挑战指数报告~

又是年底&#xff0c;又到了做选择的时候。从“激情燃烧的岁月”到“何处安放的青春”&#xff0c;逃离北上广深的口号从未停止过&#xff0c;回到北上广深的呼喊更是一浪接着一浪。应届生们奔波忙碌&#xff0c;想有一份承载自己梦想的工作&#xff0c;想在异乡有一处安身之所…

apple组织名称是什么_什么是Apple Macintosh?

apple组织名称是什么苹果Macintosh (Apple Macintosh) Steve Jobs and Steve Wozniak has founded the line of computers in the year 1984, on the date 24th January, named it Apple Macintosh. Macintosh is shortly abbreviated as Mac. In this, various versions of co…