离散数学和组合数学什么关系
关系类型 (Types of Relation)
There are many types of relation which is exist between the sets,
集合之间存在许多类型的关系,
1. Universal Relation
1.普遍关系
A relation r from set a to B is said to be universal if: R = A * B
从组a到b关系R被认为是通用的,如果:R = A * B
Example:
例:
A = {1,2} B = {a, b}
A = {1,2} B = {a,b}
R = { (1, a), (1, b), (2, a), (2, b) is a universal relation.
R = {(1,a),(1,b),(2,a),(2,b)是普遍关系。
2. Compliment Relation
2.称赞关系
Compliment of a relation will contain all the pairs where pair do not belong to relation but belongs to Cartesian product.
关系的称赞将包含所有对,其中对不属于关系而是属于笛卡尔积。
R = A * B – X
R = A * B – X
Example:
例:
A = { 1, 2}   B = { 3, 4}
R = { (1, 3) (2, 4) }
Then the complement of R
Rc = { (1, 4) (2, 3) }
3. Empty Relation
3.空关系
A null set phie is subset of A * B.
空集phie是A * B的子集。
R = phie is empty relation
R = phi是空关系
4. Inverse of relation
4.关系逆
An inverse of a relation is denoted by R^-1 which is the same set of pairs just written in different or reverse order. Let R be any relation from A to B. The inverse of R denoted by R^-1 is the relation from B to A defined by:
关系的逆由R ^ -1表示, R ^ -1是只是以不同或相反顺序写入的同一对对的集合。 令R为从A到B的任何关系。 R的逆表示由R ^ -1是从B到A的关系由下式定义:
 R^-1 = { (y, x) : yEB, xEA, (x, y) E R}
5. Composite Relation
5.复合关系
Let A, B, and C be any three sets. Let consider a relation R from A to B and another relation from B to C. The composition relation of the two relation R and S be a Relation from the set A to the set C, and is denoted by RoS and is defined as follows:
令A , B和C为任意三个集合。 让我们考虑从A到B的关系R和从B到C的另一个关系。 两个关系R和S的组成关系是从集合A到集合C的一个关系,用RoS表示,并定义如下:
Ros = { (a, c) : an element of B such that (a, b) E R and (b, c) E s, when a E A , c E C}
Hence, (a, b) E R (b, c) E S => (a, c) E RoS.
 Ros = {(a,c):B的元素,当EA,c EC时具有(a,b)ER和(b,c)E s 
 因此,(a,b)ER(b,c)ES =>(a,c)E RoS 。 
6. Equivalence Relation
6.等价关系
The relation R is called equivalence relation when it satisfies three properties if it is reflexive, symmetric, and transitive in a set x. If R is an equivalence relation in a set X then D(R) the domain of R is X itself. Therefore, R will be called a relation on X.
关系R如果满足集合x中的自反,对称和可传递的三个属性,则称为等价关系。 如果R是集合X中的等价关系,则D(R)的R域是X本身。 因此, R将被称为X上的关系。
The following are some examples of the equivalence relation:
以下是等价关系的一些示例:
- Equality of numbers on a set of real numbers. - 一组实数上的数字相等。 
- Equality of subsets of a universal set. - 通用集的子集的相等性。 
- Similarities of triangles on the set of triangles. - 三角形集上三角形的相似性。 
- Relation of lines being a parallel onset of lines in a plane. - 线的关系是平面中线的平行起点。 
- Relation of living in the same town on the set of persons living in Canada. - 在加拿大居住的同一套城镇中居住的关系。 
7. Partial order relation
7.偏序关系
Let, R be a relation in a set A then, R is called partial order Relation if,
假设R是集合A中的一个关系,那么,如果R被称为偏序关系,
- R is reflexive - R是反身的 - i.e. aRa ,a belongs to A - 即aRa,a属于A 
- R is anti- symmetric - R是反对称的 - i.e. aRb, bRa => a = b, a, b belongs to a - 即aRb,bRa => a = b,a,b属于a 
- R is transitive - R是可传递的 - aRb, bRc => aRc, a, b, c belongs to A - aRb,bRc => aRc,a,b,c属于A 
8. Antisymmetric Relation
8.反对称关系
A relation R on a set a is called on antisymmetric relation if for x, y if for x, y =>
如果对于x,y,则对集合a的关系R称为反对称关系,对于x,y =>
If (x, y) and (y, x) E R then x = y
如果(x,y)和(y,x)ER,则x = y
Example: { (1, 2) (2, 3), (2, 2) } is antisymmetric relation.
示例:{(1,2)(2,3),(2,2)}是反对称关系。
A relation that is antisymmetric is not the same as not symmetric. A relation can be antisymmetric and symmetric at the same time.
反对称关系与非对称关系不相同。 一个关系可以同时是反对称的和对称的。
9. Irreflective relation
9.反射关系
A relation R is said to be on irreflective relation if x E a (x ,x) does not belong to R.
关系R被说成是对irreflective关系如果x E中的(X,X)不属于R上 。
Example:
例:
    a = {1, 2, 3}
R = { (1, 2), (1, 3) if is an irreflexive relation
10. Not Reflective relation
10.非反思关系
A relation R is said to be not reflective if neither R is reflexive nor irreflexive.
如果R既不是自反的也不是自反的,则关系R被认为是不反射的。
翻译自: https://www.includehelp.com/basics/types-of-relation-discrete mathematics.aspx
离散数学和组合数学什么关系