互相关函数的信号傅里叶变换形式表达以及推导
1.我们要实现怎样的目标?
如果有两个复信号,
连续信号表示为y1(t)y_1(t)y1(t)和 y2(t)y_2(t)y2(t);
离散信号表示为y1(n)y_1(n)y1(n)和y2(n)y_2(n)y2(n);
两个信号的互相关函数表示为Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ);
两个信号的傅里叶变换分别表示为Y1(w)Y_1(w)Y1(w)和Y2(w)Y_2(w)Y2(w);
两个信号的互功率谱表示为Py1y2(w)P_{y_1y_2}(w)Py1y2(w);
两个信号的卷积表示为y1∗y2y_1*y_2y1∗y2;
两个信号的共轭分别表示为y1∗y_1^*y1∗和y2∗y_2^*y2∗。
使用两个信号的傅里叶变换Y1(w)Y_1(w)Y1(w)和Y2(w)Y_2(w)Y2(w)来表示两个信号之间的互相关函数Rxy(τ)R_{xy}(\tau)Rxy(τ),则可表示为:
对于连续信号:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) =12π∫−∞+∞Y1∗(w)Y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(w)Y_2(w)e^{jw\tau}dw}2π1∫−∞+∞Y1∗(w)Y2(w)ejwτdw
对于离散信号:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) = 12π∫02πY1∗(w)Y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1^*(w)Y_2(w)e^{jw\tau}dw}2π1∫02πY1∗(w)Y2(w)ejwτdw
我们的目标是:
(1)完成公式(1−1)(1-1)(1−1)推导
(3)在推导过程中,了解互相关函数,互功率谱、卷积和共轭之间的关系
2.一些基本知识的铺垫
在进行公式推导前,我们需要进行一些基础知识的铺垫。
2.1 什么是互相关函数?什么是实信号的互相关函数?
在2.1小节,我们都是讨论实信号,在2.2小节,我们再讨论复信号。
实信号y1(n)y_1(n)y1(n)和y2(n)y_2(n)y2(n)的互相关函数,简单的来说,就是把其中一个信号(假如是y2(n)y_2(n)y2(n))平移一段距离τ\tauτ,看它和另外一个信号(y1(n)y_1(n)y1(n))的相似程度。
互相关函数就是描述这个相似程度的高低,互相关函数是平移距离的函数,也就是说互相关函数随着平移距离τ\tauτ的变化而变化。
那么互相关函数采用什么形式来描述这种相似程度呢?
对于连续型信号,我们使用平方积分来描述这种相似程度:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∫−∞+∞y1(t)y2(t+τ)dt\displaystyle \int^{+\infty}_{-\infty}{y_1(t)y_2(t+\tau)dt}∫−∞+∞y1(t)y2(t+τ)dt
如果y2(t)y_2(t)y2(t)平移一段距离τ\tauτ后,和y1(t)y_1(t)y1(t)越相似,那么它们的乘积再积分一定越大。
对于离散信号,我们使用平方求和来描述这种相似程度:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∑n=−∞+∞y1(n)y2(n+τ)\displaystyle \sum^{ +\infty}_{n =-\infty}{y_1(n)y_2(n+\tau)}n=−∞∑+∞y1(n)y2(n+τ)
如果y2(t)y_2(t)y2(t)平移一段距离τ\tauτ后,和y1(t)y_1(t)y1(t)越相似,那么它们的乘积再求和一定越大。
以上的互相关函数的描述形式是基于信号平方可积或平方可和(即有限能量)的前提下才成立。
假如y1(t)y_1(t)y1(t)和y2(t)y_2(t)y2(t)(或者y1(n)y_1(n)y1(n)和y2(n)y_2(n)y2(n))是“永远持续”的信号,那么无论是乘积积分,还是乘积求和,互相关函数都无法表示。那么对于永远持续”的信号如何描述它们之间的相似性呢?
永远持续”的信号被处理成随机过程,对于宽平稳随机过程,自相关函数定义为:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=E[y1(t)y2(t+τ)]E[y_1(t)y_2(t+\tau)]E[y1(t)y2(t+τ)]
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=E[y1(n)y2(n+τ)]E[y_1(n)y_2(n+\tau)]E[y1(n)y2(n+τ)]
在实际的操作中,上述通过期望求互相关函数往往被处理成:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=E[y1(t)y2(t+τ)]E[y_1(t)y_2(t+\tau)]E[y1(t)y2(t+τ)]
=limT→−∞1T\displaystyle \lim_{T\to -\infty}{\frac{1}{T}}T→−∞limT1∫0T\displaystyle \int^{T}_{0}∫0Ty1(t)y2(t+τ)dt{y_1(t)y_2(t+\tau)dt}y1(t)y2(t+τ)dt
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=E[y1(n)y2(n+τ)]E[y_1(n)y_2(n+\tau)]E[y1(n)y2(n+τ)]
=limN→−∞1N\displaystyle \lim_{N\to -\infty}{\frac{1}{N}}N→−∞limN1∑n=0N−1y1(n)y2(n+τ)\displaystyle \sum^{ N-1}_{n=0}{y_1(n)y_2(n+\tau)}n=0∑N−1y1(n)y2(n+τ)
2.2什么是复信号的互相关函数?
为什么复信号要使用共轭相乘?
当y1(t)y_1(t)y1(t)和y2(t)y_2(t)y2(t)(或者y1(n)y_1(n)y1(n)和y2(n)y_2(n)y2(n))是复信号时,互相关函数描述复信号的相似程度,这时若直接采用两个复信号相乘形式,起不到相似度叠加的效果,所以一般会取其中任一信号的共轭形式,然后在与另一信号相乘,所以互相关函数表示为:
(1)基于信号平方可积或平方可和(即有限能量)的互相关函数表达形式
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∫−∞+∞y1∗(t)y2(t+τ)dt\displaystyle \int^{+\infty}_{-\infty}{y_1^*(t)y_2(t+\tau)dt}∫−∞+∞y1∗(t)y2(t+τ)dt
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∑n=−∞+∞y1∗(n)y2(n+τ)\displaystyle \sum^{ +\infty}_{n =-\infty}{y_1^*(n)y_2(n+\tau)}n=−∞∑+∞y1∗(n)y2(n+τ)
(2)当复信号为“永久持续”的信号时
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=E[y1∗(t)y2(t+τ)]E[y_1^*(t)y_2(t+\tau)]E[y1∗(t)y2(t+τ)]
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=E[y1∗(n)y2(n+τ)]E[y_1^*(n)y_2(n+\tau)]E[y1∗(n)y2(n+τ)]
2.3什么是信号的互功率谱?互相关函数和互功率谱之间的关系?
互功率谱就是对互相关函数的傅里叶变换。
对于连续信号:
Py1y2(w)P_{y_1y_2}(w)Py1y2(w)=∫−∞+∞Ry1y2(τ)e−jwτdτ\displaystyle \int^{+\infty}_{-\infty}{R_{y_1y_2}(\tau)e^{-jw\tau}d\tau}∫−∞+∞Ry1y2(τ)e−jwτdτ
所以互相关函数和互功率谱实际是一对傅里叶变换对,由此
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) = 12π∫−∞+∞Py1y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{P_{y_1y_2}(w)e^{jw\tau}dw}2π1∫−∞+∞Py1y2(w)ejwτdw
对于离散信号:
Py1y2(w)P_{y_1y_2}(w)Py1y2(w)=∑τ=−∞+∞Ry1y2(τ)e−jwτ\displaystyle \sum^{ +\infty}_{\tau =-\infty}{R_{y_1y_2}(\tau)e^{-jw\tau}}τ=−∞∑+∞Ry1y2(τ)e−jwτ
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) = 12π∫02πPy1y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{P_{y_1y_2}(w)e^{jw\tau}dw}2π1∫02πPy1y2(w)ejwτdw
2.4卷积和两个信号卷积的傅里叶变换?
两个信号的卷积的傅里叶变换等于它们各自傅里叶变换的乘积。
若
Y1(w)Y_1(w)Y1(w)=∫−∞+∞y1(τ)e−jwτdτ\displaystyle \int^{+\infty}_{-\infty}{y_1(\tau)e^{-jw\tau}d\tau}∫−∞+∞y1(τ)e−jwτdτ
Y2(w)Y_2(w)Y2(w)=∫−∞+∞y2(τ)e−jwτdτ\displaystyle \int^{+\infty}_{-\infty}{y_2(\tau)e^{-jw\tau}d\tau}∫−∞+∞y2(τ)e−jwτdτ
则
Y1(w)Y_1(w)Y1(w)Y2(w)Y_2(w)Y2(w)=∫−∞+∞y1(τ)∗y2(τ)e−jwτdτ\displaystyle \int^{+\infty}_{-\infty}{y_1(\tau)*y_2(\tau)e^{-jw\tau}d\tau}∫−∞+∞y1(τ)∗y2(τ)e−jwτdτ
3.使用两个信号的傅里叶变换表示两个信号之间的互相关函数
3.1若y1(t)y_1(t)y1(t)和y2(t)y_2(t)y2(t)为连续信号,且满足信号平方可积
则由2.1节知:
两个复信号之间的互相关函数为:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∫−∞+∞y1∗(t)y2(t+τ)dt\displaystyle \int^{+\infty}_{-\infty}{y_1^*(t)y_2(t+\tau)dt}∫−∞+∞y1∗(t)y2(t+τ)dt
但现在我们要用两个信号的傅里叶变化来表示它们的互相关函数,那么可以如何表示呢?
我们首先给出表达形式如下,然后进行推导。
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=12π∫−∞+∞Y1∗(w)Y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(w)Y_2(w)e^{jw\tau}dw}2π1∫−∞+∞Y1∗(w)Y2(w)ejwτdw
因为:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∫−∞+∞y1∗(t)y2(t+τ)dt\displaystyle \int^{+\infty}_{-\infty}{y_1^*(t)y_2(t+\tau)dt}∫−∞+∞y1∗(t)y2(t+τ)dt
令t=−t′t=-t^{'}t=−t′,t′=−tt^{'}=-tt′=−t则
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∫+∞−∞y1∗(−t′)y2(−t′+τ)d−t′\displaystyle \int^{-\infty}_{+\infty}{y_1^*(-t^{'})y_2(-t^{'}+\tau)d-t^{'}}∫+∞−∞y1∗(−t′)y2(−t′+τ)d−t′
\quad\quad\quad\quad=∫+∞−∞y1∗(−t′)y2(−t′+τ)d−t′\displaystyle \int^{-\infty}_{+\infty}{y_1^*(-t^{'})y_2(-t^{'}+\tau)d-t^{'}}∫+∞−∞y1∗(−t′)y2(−t′+τ)d−t′
\quad\quad\quad\quad=∫−∞+∞y1∗(−t′)y2(−t′+τ)dt′\displaystyle \int^{+\infty}_{-\infty}{y_1^*(-t^{'})y_2(-t^{'}+\tau)dt^{'}}∫−∞+∞y1∗(−t′)y2(−t′+τ)dt′
\quad\quad\quad\quad=y1∗(−τ)∗y2(τ)y_1^*(-\tau)*y_2(\tau)y1∗(−τ)∗y2(τ)
由2.3节知:
Py1y2(w)P_{y_1y_2}(w)Py1y2(w)=∫−∞+∞Ry1y2(τ)e−jwτdτ\displaystyle \int^{+\infty}_{-\infty}{R_{y_1y_2}(\tau)e^{-jw\tau}d\tau}∫−∞+∞Ry1y2(τ)e−jwτdτ
\quad\quad\quad\quad=∫−∞+∞y1∗(−τ)∗y2(τ)e−jwτdτ\displaystyle \int^{+\infty}_{-\infty}{y_1^*(-\tau)*y_2(\tau)e^{-jw\tau}d\tau}∫−∞+∞y1∗(−τ)∗y2(τ)e−jwτdτ
由2.4节知:
Py1y2(w)P_{y_1y_2}(w)Py1y2(w)=∫−∞+∞y1∗(−τ)∗y2(τ)e−jwτdτ\displaystyle \int^{+\infty}_{-\infty}{y_1^*(-\tau)*y_2(\tau)e^{-jw\tau}d\tau}∫−∞+∞y1∗(−τ)∗y2(τ)e−jwτdτ
\quad\quad\quad\quad=∫−∞+∞y1∗(−τ)e−jwτdτ×∫−∞+∞y2(τ)e−jwτdτ\displaystyle \int^{+\infty}_{-\infty}{y_1^*(-\tau)e^{-jw\tau}d\tau}\times \displaystyle \int^{+\infty}_{-\infty}{y_2(\tau)e^{-jw\tau}d\tau}∫−∞+∞y1∗(−τ)e−jwτdτ×∫−∞+∞y2(τ)e−jwτdτ
\quad\quad\quad\quad=∫−∞+∞y1∗(−τ)e−jwτdτ×Y2(w)\displaystyle \int^{+\infty}_{-\infty}{y_1^*(-\tau)e^{-jw\tau}d\tau}\times Y_2(w)∫−∞+∞y1∗(−τ)e−jwτdτ×Y2(w)
令τ=−τ′\tau=-\tau^{'}τ=−τ′,τ′=−τ\tau^{'}=-\tauτ′=−τ,则
Py1y2(w)P_{y_1y_2}(w)Py1y2(w)=∫+∞−∞y1∗(τ′)ejwτ′d(−τ′)×Y2(w)\displaystyle \int^{-\infty}_{+\infty}{y_1^*(\tau^{'})e^{jw\tau^{'}}d(-\tau^{'})}\times Y_2(w)∫+∞−∞y1∗(τ′)ejwτ′d(−τ′)×Y2(w)
\quad\quad\quad\quad=∫−∞+∞y1∗(τ′)ejwτ′dτ′×Y2(w)\displaystyle \int^{+\infty}_{-\infty}{y_1^*(\tau^{'})e^{jw\tau^{'}}d\tau^{'}}\times Y_2(w)∫−∞+∞y1∗(τ′)ejwτ′dτ′×Y2(w)
\quad\quad\quad\quad=∫−∞+∞y1∗(τ′)ejwτ′dτ′×Y2(w)\displaystyle \int^{+\infty}_{-\infty}{y_1^*(\tau^{'})e^{jw\tau^{'}}d\tau^{'}}\times Y_2(w)∫−∞+∞y1∗(τ′)ejwτ′dτ′×Y2(w)
\quad\quad\quad\quad=(∫−∞+∞y1(τ′)e−jwτ′dτ′)∗×Y2(w)(\displaystyle \int^{+\infty}_{-\infty}{y_1(\tau^{'})e^{-jw\tau^{'}}d\tau^{'}})^*\times Y_2(w)(∫−∞+∞y1(τ′)e−jwτ′dτ′)∗×Y2(w)
\quad\quad\quad\quad=Y1∗(w)Y2(w)Y_1^*(w)Y_2(w)Y1∗(w)Y2(w)
由2.3知:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) = 12π∫−∞+∞Py1y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{P_{y_1y_2}(w)e^{jw\tau}dw}2π1∫−∞+∞Py1y2(w)ejwτdw
\quad\quad\quad\quad=12π∫−∞+∞Y1∗(w)Y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(w)Y_2(w)e^{jw\tau}dw}2π1∫−∞+∞Y1∗(w)Y2(w)ejwτdw
\quad\quad\quad\quad=12π∫−∞+∞Y1∗(w)Y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(w)Y_2(w)e^{jw\tau}dw}2π1∫−∞+∞Y1∗(w)Y2(w)ejwτdw
由此我们完成了连续信号的互相关函数的推导过程。
令w=−w′w=-w^{'}w=−w′,w′=−ww^{'}=-ww′=−w,则
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) =12π∫+∞−∞Y1∗(−w′)Y2(−w′)e−jw′τd(−w′)\frac{1}{2\pi}\displaystyle \int^{-\infty}_{+\infty}{Y_1^*(-w^{'})Y_2(-w^{'})e^{-jw^{'}\tau}d(-w^{'})}2π1∫+∞−∞Y1∗(−w′)Y2(−w′)e−jw′τd(−w′)
\quad\quad\quad\quad=12π∫−∞+∞Y1∗(−w′)Y2(−w′)e−jw′τd(w′)\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(-w^{'})Y_2(-w^{'})e^{-jw^{'}\tau}d(w^{'})}2π1∫−∞+∞Y1∗(−w′)Y2(−w′)e−jw′τd(w′)
若y1(t)y_1(t)y1(t)和y2(t)y_2(t)y2(t)是实信号,则由实信号的共轭对称性得:
Y1∗(−w′)Y_1^*(-w^{'})Y1∗(−w′)=Y1(w′)Y_1(w^{'})Y1(w′)
Y2(−w′)Y_2(-w^{'})Y2(−w′)=Y2∗(w′)Y_2^*(w^{'})Y2∗(w′)
所以当y1(t)y_1(t)y1(t)和y2(t)y_2(t)y2(t)是实信号时,
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) =12π∫−∞+∞Y1∗(−w′)Y2(−w′)e−jw′τdw′\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1^*(-w^{'})Y_2(-w^{'})e^{-jw^{'}\tau}dw^{'}}2π1∫−∞+∞Y1∗(−w′)Y2(−w′)e−jw′τdw′
\quad\quad\quad\quad=12π∫−∞+∞Y1(w′)Y2∗(w′)e−jw′τdw′\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1(w^{'})Y_2^*(w^{'})e^{-jw^{'}\tau}dw^{'}}2π1∫−∞+∞Y1(w′)Y2∗(w′)e−jw′τdw′
\quad\quad\quad\quad=12π∫−∞+∞Y1(w)Y2∗(w)e−jwτdw\frac{1}{2\pi}\displaystyle \int^{+\infty}_{-\infty}{Y_1(w)Y_2^*(w)e^{-jw\tau}dw}2π1∫−∞+∞Y1(w)Y2∗(w)e−jwτdw
3.2 若y1(n)y_1(n)y1(n)和y2(n)y_2(n)y2(n)为离散信号,且满足信号平方可和
则由2.1节知:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∑n=−∞+∞y1(n)y2(n+τ)\displaystyle \sum^{ +\infty}_{n =-\infty}{y_1(n)y_2(n+\tau)}n=−∞∑+∞y1(n)y2(n+τ)
但现在我们要用两个信号的傅里叶变化来表示它们的互相关函数,那么可以如何表示呢?
我们首先给出表达形式如下,然后进行推导。
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) = 12π∫02πY1∗(w)Y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1^*(w)Y_2(w)e^{jw\tau}dw}2π1∫02πY1∗(w)Y2(w)ejwτdw
因为:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∑n=−∞+∞y1(n)y2(n+τ)\displaystyle \sum^{ +\infty}_{n =-\infty}{y_1(n)y_2(n+\tau)}n=−∞∑+∞y1(n)y2(n+τ)
令n=−n′n=-n^{'}n=−n′,n′=−nn^{'}=-nn′=−n,则:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ)=∑n′=−∞+∞y1(−n′)y2(−n′+τ)\displaystyle \sum^{ +\infty}_{n^{'} =-\infty}{y_1(-n^{'})y_2(-n^{'}+\tau)}n′=−∞∑+∞y1(−n′)y2(−n′+τ)
\quad\quad\quad\quad=y1∗(−τ)∗y2(τ)y_1^*(-\tau)*y_2(\tau)y1∗(−τ)∗y2(τ)
由2.3节知:
Py1y2(w)P_{y_1y_2}(w)Py1y2(w)=∑τ=−∞+∞Ry1y2(τ)e−jwτ\displaystyle \sum^{ +\infty}_{\tau =-\infty}{R_{y_1y_2}(\tau)e^{-jw\tau}}τ=−∞∑+∞Ry1y2(τ)e−jwτ
\quad\quad\quad\quad=∑τ=−∞+∞y1∗(−τ)e−jwτ×∑τ=−∞+∞y2(τ)e−jwτ\displaystyle \sum^{ +\infty}_{\tau =-\infty}{y_1^*(-\tau)e^{-jw\tau}} \times \displaystyle \sum^{ +\infty}_{\tau =-\infty}{y_2(\tau)e^{-jw\tau}}τ=−∞∑+∞y1∗(−τ)e−jwτ×τ=−∞∑+∞y2(τ)e−jwτ
\quad\quad\quad\quad=Y1∗(w)Y2(w)Y_1^*(w)Y_2(w)Y1∗(w)Y2(w)
由2.3节知:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) = 12π∫02πPy1y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{P_{y_1y_2}(w)e^{jw\tau}dw}2π1∫02πPy1y2(w)ejwτdw
\quad\quad\quad\quad=12π∫02πY1∗(w)Y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1^*(w)Y_2(w)e^{jw\tau}dw}2π1∫02πY1∗(w)Y2(w)ejwτdw
若y1(n)y_1(n)y1(n)和y2(n)y_2(n)y2(n)为实信号,同理可得:
Ry1y2(τ)R_{y_1y_2}(\tau)Ry1y2(τ) = 12π∫02πY1∗(w)Y2(w)ejwτdw\frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1^*(w)Y_2(w)e^{jw\tau}dw}2π1∫02πY1∗(w)Y2(w)ejwτdw
\quad\quad\quad\quad=12π∫02πY1(w)Y2∗(w)e−jwτdw\frac{1}{2\pi}\displaystyle \int^{2\pi}_{0}{Y_1(w)Y_2^*(w)e^{-jw\tau}dw}2π1∫02πY1(w)Y2∗(w)e−jwτdw