「DLP-KDD 2021征文」及上届论文全集,包含深度学习推荐/广告系统、多目标、模型服务等

「DLP-KDD 2021征文」及上届论文全集,包含深度学习推荐/广告系统、多目标、模型服务等

在DLP-KDD 2021征稿之际,为大家准备了DLP-KDD2020的全部文章和资源列表,内容涵盖了几乎所有深度学习的业界应用前沿,包括深度学习推荐系统应用,多目标优化,Bandit,Learning to rank,模型服务等前沿方向。

DLP-KDD作为学术盛会KDD的下设workshop,由阿里发起,这届workshop由来自阿里巴巴/微软/华为/Roku,以及上海交通大学/犹他大学等工业界/学术界资深同行组成主席团,旨在促进深度学习在广告、推荐、搜索场景下的应用与业界交流,录用文章的工程性,实用性很强,推荐算法工程师同行们阅读。

同时,DLP-KDD 2021即将召开,欢迎大家积极投稿参与(截稿日期2021年5月10日,可根据具体情况适当延期),所有录用论文将会被ACM-DL(https://dl.acm.org/doi/proceedings/10.1145/3326937)或Springer收录收录,详细信息请参照如下征稿文章:

https://zhuanlan.zhihu.com/p/364358132

介绍完DLP-KDD 2021,下面为大家介绍上一届DLP-KDD 2020的收录论文及原文链接:(请点击原文阅读获取全部论文pdf)

最佳论文:COLD-下一代预排序系统 (阿里巴巴)

(Best Paper Award)COLD: Towards the Next Generation of Pre-Ranking System Zhe Wang, Liqin Zhao, Biye Jiang, Guorui Zhou, Xiaoqiang Zhu and Kun Gai

业界特点非常强的文章,介绍了阿里极高QPS的环境下的深度学习召回/预排序解决方案,强烈推荐。

最佳论文银奖:基于位置Debias场景感知的排序学习方法 (美团)

(Best Paper Runner-Up) Learning-To-Rank with Context-Aware Position DebiasingKeyi Xiao, Xuezhi Cao, Peihao Huang, Sheng Chen, Xiang Zhou, Yunsen Xian

Position Debiasing是业界非常令人困扰的问题,同样是一篇不可多得的已经在美团场景下应用的工业级文章。

最佳论文银奖:DCAF-在线服务系统中的动态计算资源分配框架 (阿里巴巴)

(Best Paper Runner-Up)DCAF: A Dynamic Computation Allocation Framework for Online Serving System Biye Jiang, Pengye Zhang, Rihan Chen, Binding Dai, Xinchen Luo, Yin Yang, Guan Wang, Guorui Zhou, Xiaoqiang Zhu and Kun Gai

深度学习环境下的计算资源成为非常紧缺的资源,需要合理进行分配使用,DCAF是阿里巴巴提出的动态计算资源弹性分配框架,同样是一篇业界属性非常强的实用文章。

其他录用文章:

Selling Products by Machine: a User-Sensitive Adversarial Training method for Short Title Generation in Mobile E-CommerceManyi Wang, Tao Zhang, Qijin Chen, Chengfu Huo and Weijun Ren

xDeepInt: a hybrid architecture for modeling the vector-wise and bit-wise feature interactions Yachen Yan and Liubo Li

FLEN: Leveraging Field for Scalable CTR Prediction Wenqiang Chen, Lizhang Zhan, Yuanlong Ci, Minghua Yang, Chen Lin and Dugang Liu

Ranking with Deep Multi-Objective Learning Xuezhi Cao, Sheng Zhu, Biao Tang, Rui Xie, Fuzheng Zhang and Zhongyuan Wang

Categorization of Social Actors in Social Network Analysis (SNA) using Representation Learning via Knowledge-Graph Embeddings and Convolution Operations (RLVECO) Bonaventure Molokwu, Shaon Bhatta Shuvo and Ziad Kobti

Autoencoder Anomaly Detection on Large CAN Bus Data Elena Novikova, Vu Le, Matvey Yutin, Michael Weber and Cory Anderson

Personalized Re-ranking for Improving Diversity in Live Recommender Systems Yichao Wang, Xiangyu Zhang, Zhirong Liu, Zhenhua Dong, Xinhua Feng, Ruiming Tang and Xiuqiang He

Distilled Bandit for Real-time Online Optimization Ziying Liu, Yu Sun, Jianjie Ma, Haiyan Luo, Yujing Wu and Elizabeth Lattanzio

Review Regularized Neural Collaborative Filtering Zhimeng Pan, Wenzheng Tao and Qingyao Ai

Training Deep Learning Recommendation Model with Quantized Collective Communications Jie Yang, Jongsoo Park, Srinivas Sridharan and Ping Tak Peter Tang

Correct Normalization Matters: Understanding the Effect of Normalization On Deep Neural Network Models For Click-Through Rate Prediction Zhiqiang Wang, Qingyun She, Pengtao Zhang and Junlin Zhang

PinText 2: Attentive Bag of Annotations Embedding Jinfeng Zhuang, Jennifer Zhao, Anant Subramanian, Yun Lin, Balaji Krishnapuram and Roelof Zwol

Anomaly detection for sparse data A framework based on PU-Learning and GAN’sAndrew Shields and Ted Scully

Automated Model Selection for Time-Series Anomaly Detection Yuanxiang Ying, Juanyong Duan, Chunlei Wang, Yujing Wang, Congrui Huang and Bixiong Xu

PareCO: Pareto-aware Channel Optimization for Slimmable Neural Networks Ting-Wu Chin, Ari Morcos and Diana Marculescu

DLP-KDD 2021研讨会相关安排

Workshop官方网站:https://dlp-kdd.github.io

论文提交系统:https://easychair.org/account/signin?l=3xYwWMZmH6WsGJLCgb8CIT#

论文要求:短文(2-4页) or 长文(不超过9页)均可

征文截稿时间:2021-05-10

征文投稿录用情况通知:2021-06-10

研讨会召开时间与地点:第三届DLP-KDD workshop将于2021-08-10到14日以虚拟形式的会议召开,并在北京设立线下分会场(具体地点待定)

所有录用文章将会被ACM DL(ACM Digital Library)或Springer收录(凭作者意愿)

关于本次Workshop的一切问题也可知乎私信咨询主席团成员: @朱小强@周国睿@王喆@Weinan Zhang 等

通过上一届论文的介绍,大家可以看到DLP-KDD非常欢迎业界工程师的文章投稿,我们欢迎业界一线的模型及相关基础设施、架构的应用、改进经验。包括但不限于模型改进(Bert,Transformer,多目标学习,LTR,深度学习模型结构,Attention等)、模型服务、线上推荐流程等方向,欢迎大家投稿,并参加线下及线上的业界讨论交流。

请点击原文阅读链接获取,全部论文下载链接 。(复制链接内容直接发送到微信对话框链接即可直接打开)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478605.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

卫星系统——酒店后端全链路日志收集工具介绍

背景 随着酒店业务的高速发展,我们为用户、商家提供的服务越来越精细,系统服务化程度、复杂度也逐渐上升。微服务化虽然能够很好地解决问题,但也有副作用,比如,问题定位。 每次问题定位都需要从源头开始找同事帮我人肉…

拖拽式Vue组件代码生成平台(LCG)新版详细介绍

拖拽式Vue组件代码生成平台是一款小猴自研的Vue代码生成工具,英文全称:Low Code Generator,简称LCG。它也是一种LowCode解决方案。通过它可以快速完成Vue组件的代码骨架搭建,通过减少不必要的重复工作从而带来开发效率的提升。 体…

ImportError: libgthread-2.0.so.0: cannot open shared object file: No such file or directory

apt-get update apt-get install libglib2.0-dev系统:ubuntu16.04

LeetCode 454. 四数相加 II(哈希)

1. 题目 给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] B[j] C[k] D[l] 0。 为了使问题简单化,所有的 A, B, C, D 具有相同的长度 N,且 0 ≤ N ≤ 500 。所有整数的范围在 -228 到 228 - 1 之间…

论文浅尝 - AAAI2020 | 多轮对话系统中的历史自适应知识融合机制

论文笔记整理:潘锐,天津大学硕士。链接:https://www.aaai.org/ojs/index.php/AAAI/article/view/6425来 源:AAAI 2020论文简介保持对话的一致性和避免内容重复是构建以知识为基础的多轮对话系统的两个关键因素。尽管一些工作倾…

高性能平台设计—美团旅行结算平台实践

本文根据第23期美团技术沙龙演讲内容整理而成。 背景 美团酒旅有很多条业务线,例如酒店、门票、火车票等等,每种业务都有结算诉求,而结算处于整个交易的最后一环不可缺少,因此我们将结算平台化,来满足业务的结算诉求。…

小程序调试技术导读

近期团队内在自研小程序,我负责开发者工具中的调试部分。调试作为面向开发者的基础能力,扮演了极为重要的角色。 本篇文章是导读文章。 调试能力从0到1一共经历了4个版本,接下来的文章将会以这4个版本为主线分别进行介绍。 初始版 上图为调试…

可交互的 Attention 可视化工具!我的Transformer可解释性有救了?

文 | Sherry视觉是人和动物最重要的感觉,至少有80%以上的外界信息是经过视觉获得的。我们看论文的时候,通过图表来确定文章的大致内容往往也是一个更高效的 说到深度神经网络的可视化,最经典的莫过于的CNN密恐图了:这种可视化方法…

ImportError: libSM.so.6: cannot open shared object file: No such file or dir

ImportError: libSM.so.6: cannot open shared object file: No such file or dir 出现错误: ImportError: libSM.so.6: cannot open shared object file: No such file or dir 解决方法: apt-get install libsm6如果你出现了上面的错误,那…

LeetCode 347. 前 K 个高频元素(哈希/优先队列)

文章目录1. 题目2. 解题2.1 哈希2.2 优先队列1. 题目 给定一个非空的整数数组,返回其中出现频率前 k 高的元素。 示例 1: 输入: nums [1,1,1,2,2,3], k 2 输出: [1,2]示例 2: 输入: nums [1], k 1 输出: [1] 说明: 你可以假设给定的 k 总是合理的&…

Lego-美团接口自动化测试实践

一、概述 1.1 接口自动化概述 众所周知,接口自动化测试有着如下特点: 低投入,高产出。比较容易实现自动化。和UI自动化测试相比更加稳定。如何做好一个接口自动化测试项目呢? 我认为,一个“好的”自动化测试项目&#…

小程序调试技术详解(基于小猴小程序)

本篇文章主要围绕小猴小程序调试技术第三版进行展开。 在上一篇导读文章中提到,小猴小程序的调试部分从无到有一共经历了3个版本。本篇文章会详细描述面向开发者的调试功能是如何实现的。 文章将会描述以下部分: 调试实现的基本通信关系结构。如何实现…

论文浅尝 - CIKM2020 | 用于推荐系统的多模态知识图谱

论文笔记整理:王琰,东南大学硕士。来源:CIKM 2020链接:https://doi.org/10.1145/3340531.3411947研究背景与任务描述为了解决推荐系统中的数据稀疏和冷启动问题,研究人员通过利用有价值的外部知识作为辅助信息&#xf…

文本纠错pycorrector

原文链接:https://blog.csdn.net/javastart/article/details/107428483 这一段时间再研究身份证和面单识别项目,总发现一些识别准确率问题,在想办法提高识别率,突然看了一篇文字纠错方面资料,可以发现与ocr结合。开始收…

FedNLP: 首个联邦学习赋能NLP的开源框架,NLP迈向分布式新时代

文 | 阿毅两周前,南加大Yuchen Lin(PhD student USC and ex-research intern GoogleAI)所在的团队在Twitter官宣开源首个以研究为导向的联邦学习赋能NLP的FedNLP框架。发布数小时内就获得了647个赞,163次转发,可见其热度。我相信大…

LeetCode 380. 常数时间插入、删除和获取随机元素(哈希+vector)

1. 题目 设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作的数据结构。 insert(val):当元素 val 不存在时,向集合中插入该项。 remove(val):元素 val 存在时,从集合中移除该项。 getRandom:随机返回现…

论文浅尝 - ICLR2020 | 知识图谱中数值规则的可微学习

论文笔记整理:许泽众,浙江大学博士研究生。研究方向:知识图谱,规则挖掘等。论文链接:https://openreview.net/pdf?idrJleKgrKwS本文解决的是规则的学习问题,学习出来的规则可用于知识推理任务,…

2021大厂面试高频100题最新汇总(附答案详解)

昨天在知乎上刷到一个热门问题:程序员需要达到什么水平才能顺利拿到 20k 无压力?其中一个最热门的回答是:“其实,无论你是前端还是后端、想进大厂还是拿高薪,算法都一定很重要。”为什么,算法会如此重要?不…

LeetCode 33. 搜索旋转排序数组(二分查找)

1. 题目 假设按照升序排序的数组在预先未知的某个点上进行了旋转。 ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。 搜索一个给定的目标值,如果数组中存在这个目标值,则返回它的索引,否则返回 -1 。 你可以假设数…