NLP太难学了!?吃透NLP的方法来拿走

6727c0610a3d288fa41126b3cadaa203.png

最近有粉丝私信我,NLP很难学,这条路能坚持走吗?有相同困惑的朋友可以一起探讨一下:

大佬你好,我目前从事ERP运维工作,想转行NLP,开始是学数据结构和c刷了些leetcode题,然后把cs224n和它的大作业都撸了一遍,做了点情感文本分类的小任务。

准备去小公司找实习攒项目经验时却被同学劝退,说小公司学不到东西,然后有人建议趁早转做开发,nlp的路太难走了很难竞争。

感觉自己实力很弱,也没有人带,去小公司怕沦为打杂工具人,大厂没有项目经历又进不去。

这种情况是应该趁早自学转一个新领域比如后端吗?但总感觉这样之前的都白学了,很焦虑也很纠结。希望大佬能帮助指点下方向。

这位朋友的问题,我从两方面回答。

1

NLP学起来不容易

这是学习路径不够清晰的问题,深度学习既重理论又重实践,一步登天不可取,学习应该是循环且逐渐细化的。

先看一下学NLP的需要掌握的知识点全貌👇

ef56fd4abeec1ecb62d25a35ddce333b.png

路径大致为:基本原理→经典模型→项目实践

先阅读机器学习和深度学习原理,其次了解经典任务的baseline,动手实践,最后看懂代码,在应用程序场景中,尝试修改模型,提高效果

清楚路径后,逐个吃透:

基本原理部分有线性代数和概率论基础就能看懂,统计机器学习部分,建议初学者先看懂线性分类、SVM、树模型和图模型。

有上述基础后,就能看懂模型结构和论文里的各种名词公式。接下来就是了解NLP各个经典任务的baseline,并看懂源码。

对于TF和Pytorch的问题不用太纠结,接口都差不多,找到什么就看什么,自己写的话建议Pytorch。

上述任务都了解并且看了一些源码后,就可以去炼丹了。

2

工作不好找

这个问题可以理解成,学到什么程度好找工作?

面试无非就是像面试官证明两点:①我知道怎么做②我做过

因此企业最看重的自然是项目经历,但初学者又很难接触到工业界项目,怎么办?

建议学好后去参加一次Kaggle、天池等平台的比赛,享受优化模型的摧残。比赛项目和企业实操所需能力至少能匹配60%。

学习路线清楚了,那具体应该学哪些内容,以及怎么样去coding实践呢?

有没有现成的资料供你系统性的学习NLP?我已经给你准备好了。

免费工具一:《NLP入门视频合集》限90份

它基于花书「Deep learning」、斯坦福CS224n自然语言处理、【论文】baseline基础篇目——Word2Vec 词向量扛鼎之作等经典入门教程设计,关于我学习路径中提到的知识点,它都有体现。

目前已经有30000人通过这套课程学习NLP,普通理工科大学生大概三四个月可以掌握(学过C语言、线性代数、概率论)

扫码回复:NLP,免费领

仅90份兑换码,手慢无

02dfb08c9bbd3bec02bf7c258d996789.png

课程学习包含四个模块

4214c3247965c89c6dda1ff8142848b4.png

章节导学视频讲解

(帮你梳理教程知识概要,并圈出重难点)

c1b234e4734385d47b23125b3a3f2c33.png

手写板详细推导公式

(学科知识串联)

cd87aad9dc7dae412ad8f728a8cf598d.png

代码复现

(作业代码全部完成复现,并进行视频完整讲解)

3ffa59eb18d40c27dc39ef8aaf1e20eb.png

免费工具二:《算法工程师的就业指导课》

大厂资深算法工程师手把手教你做就业规划

扫码回复:NLP

免费领取

8e27cc49df66855ed9b4e60f765e5dde.png

ac4aebc62a6a8d131c4a62ba6de65143.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/477897.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 1161. 最大层内元素和(层序遍历)

1. 题目 给你一个二叉树的根节点 root。设根节点位于二叉树的第 1 层,而根节点的子节点位于第 2 层,依此类推。 请你找出层内元素之和 最大 的那几层(可能只有一层)的层号,并返回其中 最小 的那个。 示例&#xff1…

图谱实战 | 京东商品图谱构建与实体对齐

转载公众号 | DataFunTalk 分享嘉宾:赵学敏博士 京东科技编辑整理:蔡丽萍 TRS出品平台:DataFunTalk导读:在电商企业采购和运营过程中,如果要想掌握商品的实时价格等行情信息,就需要对齐各个电商网站的商品…

Quartz应用与集群原理分析

一、问题背景 美团CRM系统中每天有大量的后台任务需要调度执行,如构建索引、统计报表、周期同步数据等等,要求任务调度系统具备高可用性、负载均衡特性,可以管理并监控任务的执行流程,以保证任务的正确执行。 二、历史方案 美团CR…

卖萌屋新闻联播栏目,倾情上线~

编 | 小轶感谢提供本期内容的 iven、ZenMoore、 jxyxiangyu、付瑶今天这篇推文是卖萌屋全新的原创系列———暂且取名为“卖萌屋新闻联播”节目。卖萌屋的作者、小编日常都会在团队群里分享各种最新发现的实用资源、有意思的学术工作。小伙伴们在互相分享的过程中都受益匪浅。我…

LeetCode 386. 字典序排数(DFS循环)

1. 题目 给定一个整数 n, 返回从 1 到 n 的字典顺序。 例如, 给定 n 1 3,返回 [1,10,11,12,13,2,3,4,5,6,7,8,9] 。 请尽可能的优化算法的时间复杂度和空间复杂度。 输入的数据 n 小于等于 5,000,000。来源:力扣(LeetCode&#…

论文浅尝 | 基于多模态特征的视觉实体链接

转载公众号 | 数据智能英文刊文章题目:Visual Entity Linking via Multi-modal Learning作者:郑秋硕,闻浩,王萌,漆桂林引用:Zheng, Q.S., et al.: Visual Entity Linking via Multi-modal Learning. Data I…

一训练就显存爆炸?Facebook 推出 8 比特优化器,两行代码拯救你的显存!

文 | jxyxiangyu编 | 小轶“小夕,小夕!又出来了个 SOTA 模型!赶紧 follow !”小夕看了看新模型的参数量, 然后看了看实验室服务器的几张小破卡。小夕,陷入了沉默。自从人们发现越大的模型性能越好后&#x…

论文浅尝 | 基于正交普鲁克分析的高效知识图嵌入学习

笔记整理:朱渝珊,浙江大学在读博士,研究方向为快速知识图谱的表示学习,多模态知识图谱。1.Motivation知识图谱是许多NLP任务和下游应用的核心,如问答、对话代理、搜索引擎和推荐系统。知识图中存储的事实总是以元组的形…

LeetCode 979. 在二叉树中分配硬币(DFS)

文章目录1. 题目2. DFS 解题1. 题目 给定一个有 N 个结点的二叉树的根结点 root,树中的每个结点上都对应有 node.val 枚硬币,并且总共有 N 枚硬币。 在一次移动中,我们可以选择两个相邻的结点,然后将一枚硬币从其中一个结点移动…

有福利! 好书推荐:从《实用推荐系统》学习寻找用户行为之法

大多数关于推荐系统的图书都讲述了算法及其优化方法。这些书都认为你已经有了一个大的数据集来供算法使用。数据集不会像变魔术那样凭空出现。要想收集到正确的用户偏好数据,就需要投入精力和进行思考。它会成就你的系统,或者搞砸你的系统。“垃圾进&…

灵活强大的构建系统Gradle

前言 构建,软件生命周期中重要的一环,在现代软件开发过程中,起着越来越重要的作用。过去在Java或类Java的世界里,Ant、Maven再熟悉不过了,Maven凭借其强大的依赖配置战胜Ant,基本上成为了Java构建的标准。而…

LeetCode 791. 自定义字符串排序(map)

1. 题目 字符串S和 T 只包含小写字符。在S中,所有字符只会出现一次。 S 已经根据某种规则进行了排序。我们要根据S中的字符顺序对T进行排序。更具体地说,如果S中x在y之前出现,那么返回的字符串中x也应出现在y之前。 返回任意一种符合条件的…

6万字解决算法面试中的深度学习基础问题

文 | 清卢雨源 | 对白的算法屋前言真的是千呼万唤始出来emmmm,去年春招结束写了篇面试的经验分享。在文中提到和小伙伴整理了算法岗面试时遇到的常见知识点及回答,本想着授人以渔,但没想到大家都看上了我家的 !但因本人执行力不足…

OpenKG开源系列 | 海洋鱼类百科知识图谱(浙江大学)

OpenKG地址:http://openkg.cn/dataset/ocean开放许可协议:CC BY-SA 4.0贡献者:浙江大学(徐雅静、邓鸿杰、唐坤、郑国轴)1、背景海洋是生命的摇篮,是人类文明的重要发祥地,在人类社会发展的进程中起着举足轻重的作用。海…

Presto实现原理和美团的使用实践

Facebook的数据仓库存储在少量大型Hadoop/HDFS集群。Hive是Facebook在几年前专为Hadoop打造的一款数据仓库工具。在以前,Facebook的科学家和分析师一直依靠Hive来做数据分析。但Hive使用MapReduce作为底层计算框架,是专为批处理设计的。但随着数据越来越…

图谱实战 | 徐美兰:深度应用驱动的医学知识图谱构建

转载公众号 | DataFunSummit分享嘉宾:徐美兰 浙江数字医疗卫生技术研究院 数字医学知识中心主任编辑整理:李杰 京东出品平台:DataFunTalk导读:数研院这些年在知识图谱建设上取得了丰硕成果,今天我们将图谱构建过程中的…

6 年大厂面试官,谈谈我对算法岗面试的一些看法

文 | 不敢透露姓名的 Severus 和小轶面试官坐在那撇着大嘴的,“咳,给你一机会,最短的时间内让我记住你。”这个我会,我抡圆了“啪!”,扭头我就走。我刚到家,录取通知书就来了,请你务…

美团Android自动化之旅—生成渠道包

每当发新版本时,美团团购Android客户端会被分发到各个应用市场,比如豌豆荚,360手机助手等。为了统计这些市场的效果(活跃数,下单数等),需要有一种方法来唯一标识它们。 团购客户端目前通过渠道号…

开源开放 | 细粒度可循证医学文档知识融合表示和推理(CCKS2021)

OpenKG地址:http://openkg.cn/dataset/mdo-dataset开放许可协议:GPL 3.0贡献者:武汉科技大学(高峰、龚珊珊、顾进广、徐芳芳)摘要本开放资源在医学文档知识的基础上,使用知识图谱相关技术,解决了…

图灵奖大佬 Lecun 发表对比学习新作,比 SimCLR 更好用!

文 | Rukawa_Y编 | 智商掉了一地,Sheryc_王苏比 SimCLR 更好用的 Self-Supervised Learning,一起来看看吧!Self-Supervised Learning作为深度学习中的独孤九剑,当融汇贯通灵活应用之后,也能打败声名在外的武当太极剑。…