基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。

【R-CNN:Region-based Convolutional Neural Network】

object detection技术的演进:
RCNN->SppNET->Fast-RCNN->Faster-RCNN

从图像识别的任务说起
这里有一个图像任务:
既要把图中的物体识别出来,又要用方框框出它的位置。

 

上面的任务用专业的说法就是:图像识别+定位
图像识别(classification):
输入:图片
输出:物体的类别
评估方法:准确率

定位(localization):
输入:图片
输出:方框在图片中的位置(x,y,w,h)
评估方法:检测评价函数 intersection-over-union ( IOU ) 

卷积神经网络CNN已经帮我们完成了图像识别(判定是猫还是狗)的任务了,我们只需要添加一些额外的功能来完成定位任务即可。

定位的问题的解决思路有哪些?
思路一:看做回归问题
看做回归问题,我们需要预测出(x,y,w,h)四个参数的值,从而得出方框的位置。



步骤1:
  • 先解决简单问题, 搭一个识别图像的神经网络
  • 在AlexNet VGG GoogleLenet上fine-tuning一下

 

步骤2:
  • 在上述神经网络的尾部展开(也就说CNN前面保持不变,我们对CNN的结尾处作出改进:加了两个头:“分类头”和“回归头”)
  • 成为classification + regression模式


步骤3:
  • Regression那个部分用欧氏距离损失
  • 使用SGD训练

 

步骤4:
  • 预测阶段把2个头部拼上
  • 完成不同的功能

 


这里需要进行两次fine-tuning
第一次在ALexNet上做,第二次将头部改成regression head,前面不变,做一次fine-tuning

 

Regression的部分加在哪?

有两种处理方法:
  • 加在最后一个卷积层后面(如VGG)
  • 加在最后一个全连接层后面(如R-CNN)

 

regression太难做了,应想方设法转换为classification问题。
regression的训练参数收敛的时间要长得多,所以上面的网络采取了用classification的网络来计算出网络共同部分的连接权值。

 

思路二:取图像窗口
  • 还是刚才的classification + regression思路
  • 咱们取不同的大小的“框”
  • 让框出现在不同的位置,得出这个框的判定得分
  • 取得分最高的那个框


左上角的黑框:得分0.5

右上角的黑框:得分0.75

左下角的黑框:得分0.6

右下角的黑框:得分0.8

根据得分的高低,我们选择了右下角的黑框作为目标位置的预测。
注:有的时候也会选择得分最高的两个框,然后取两框的交集作为最终的位置预测。

疑惑:框要取多大?
取不同的框,依次从左上角扫到右下角。非常粗暴啊。

总结一下思路:
对一张图片,用各种大小的框(遍历整张图片)将图片截取出来,输入到CNN,然后CNN会输出这个框的得分(classification)以及这个框图片对应的x,y,h,w(regression)。


这方法实在太耗时间了,做个优化。
原来网络是这样的:



优化成这样:把全连接层改为卷积层,这样可以提提速。

 

物体检测(Object Detection)
当图像有很多物体怎么办的?难度可是一下暴增啊。

那任务就变成了:多物体识别+定位多个物体
那把这个任务看做分类问题?

看成分类问题有何不妥?
  • 你需要找很多位置, 给很多个不同大小的框
  • 你还需要对框内的图像分类
  • 当然, 如果你的GPU很强大, 恩, 那加油做吧…

看做classification, 有没有办法优化下?我可不想试那么多框那么多位置啊!
有人想到一个好方法:
找出可能含有物体的框(也就是候选框,比如选1000个候选框),这些框之间是可以互相重叠互相包含的,这样我们就可以避免暴力枚举的所有框了。



大牛们发明好多选定候选框的方法,比如EdgeBoxes和Selective Search。
以下是各种选定候选框的方法的性能对比。



有一个很大的疑惑,提取候选框用到的算法“选择性搜索”到底怎么选出这些候选框的呢?那个就得好好看看它的论文了,这里就不介绍了。


R-CNN横空出世
基于以上的思路,RCNN的出现了。

步骤一:训练(或者下载)一个分类模型(比如AlexNet)

步骤二:对该模型做fine-tuning
  • 将分类数从1000改为20
  • 去掉最后一个全连接层


步骤三:特征提取
  • 提取图像的所有候选框(选择性搜索)
  • 对于每一个区域:修正区域大小以适合CNN的输入,做一次前向运算,将第五个池化层的输出(就是对候选框提取到的特征)存到硬盘

步骤四:训练一个SVM分类器(二分类)来判断这个候选框里物体的类别
每个类别对应一个SVM,判断是不是属于这个类别,是就是positive,反之nagative
比如下图,就是狗分类的SVM


步骤五:使用回归器精细修正候选框位置:对于每一个类,训练一个线性回归模型去判定这个框是否框得完美。

 

 

RCNN的进化中SPP Net的思想对其贡献很大,这里也简单介绍一下SPP Net。

SPP Net
SPP:Spatial Pyramid Pooling(空间金字塔池化)
它的特点有两个:

1.结合空间金字塔方法实现CNNs的对尺度输入。
一般CNN后接全连接层或者分类器,他们都需要固定的输入尺寸,因此不得不对输入数据进行crop或者warp,这些预处理会造成数据的丢失或几何的失真。SPP Net的第一个贡献就是将金字塔思想加入到CNN,实现了数据的多尺度输入。

如下图所示,在卷积层和全连接层之间加入了SPP layer。此时网络的输入可以是任意尺度的,在SPP layer中每一个pooling的filter会根据输入调整大小,而SPP的输出尺度始终是固定的。

 

2.只对原图提取一次卷积特征
在R-CNN中,每个候选框先resize到统一大小,然后分别作为CNN的输入,这样是很低效的。
所以SPP Net根据这个缺点做了优化:只对原图进行一次卷积得到整张图的feature map,然后找到每个候选框zaifeature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层。节省了大量的计算时间,比R-CNN有一百倍左右的提速。


Fast R-CNN
SPP Net真是个好方法,R-CNN的进阶版Fast R-CNN就是在RCNN的基础上采纳了SPP Net方法,对RCNN作了改进,使得性能进一步提高。

R-CNN与Fast RCNN的区别有哪些呢?
先说RCNN的缺点:即使使用了selective search等预处理步骤来提取潜在的bounding box作为输入,但是RCNN仍会有严重的速度瓶颈,原因也很明显,就是计算机对所有region进行特征提取时会有重复计算,Fast-RCNN正是为了解决这个问题诞生的。

大牛提出了一个可以看做单层sppnet的网络层,叫做ROI Pooling,这个网络层可以把不同大小的输入映射到一个固定尺度的特征向量,而我们知道,conv、pooling、relu等操作都不需要固定size的输入,因此,在原始图片上执行这些操作后,虽然输入图片size不同导致得到的feature map尺寸也不同,不能直接接到一个全连接层进行分类,但是可以加入这个神奇的ROI Pooling层,对每个region都提取一个固定维度的特征表示,再通过正常的softmax进行类型识别。另外,之前RCNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做bbox regression,而在Fast-RCNN中,作者巧妙的把bbox regression放进了神经网络内部,与region分类和并成为了一个multi-task模型,实际实验也证明,这两个任务能够共享卷积特征,并相互促进。Fast-RCNN很重要的一个贡献是成功的让人们看到了Region Proposal+CNN这一框架实时检测的希望,原来多类检测真的可以在保证准确率的同时提升处理速度,也为后来的Faster-RCNN做下了铺垫。

画一画重点:
R-CNN有一些相当大的缺点(把这些缺点都改掉了,就成了Fast R-CNN)。
大缺点:由于每一个候选框都要独自经过CNN,这使得花费的时间非常多。
解决:共享卷积层,现在不是每一个候选框都当做输入进入CNN了,而是输入一张完整的图片,在第五个卷积层再得到每个候选框的特征

原来的方法:许多候选框(比如两千个)-->CNN-->得到每个候选框的特征-->分类+回归
现在的方法:一张完整图片-->CNN-->得到每张候选框的特征-->分类+回归

所以容易看见,Fast RCNN相对于RCNN的提速原因就在于:不过不像RCNN把每个候选区域给深度网络提特征,而是整张图提一次特征,再把候选框映射到conv5上,而SPP只需要计算一次特征,剩下的只需要在conv5层上操作就可以了。

在性能上提升也是相当明显的:

Faster R-CNN
Fast R-CNN存在的问题:存在瓶颈:选择性搜索,找出所有的候选框,这个也非常耗时。那我们能不能找出一个更加高效的方法来求出这些候选框呢?
解决:加入一个提取边缘的神经网络,也就说找到候选框的工作也交给神经网络来做了。
做这样的任务的神经网络叫做Region Proposal Network(RPN)。

具体做法:
  • 将RPN放在最后一个卷积层的后面
  • RPN直接训练得到候选区域

 

RPN简介:
  • 在feature map上滑动窗口
  • 建一个神经网络用于物体分类+框位置的回归
  • 滑动窗口的位置提供了物体的大体位置信息
  • 框的回归提供了框更精确的位置

 


一种网络,四个损失函数;
  • RPN calssification(anchor good.bad)
  • RPN regression(anchor->propoasal)
  • Fast R-CNN classification(over classes)
  • Fast R-CNN regression(proposal ->box)

速度对比

Faster R-CNN的主要贡献是设计了提取候选区域的网络RPN,代替了费时的选择性搜索,使得检测速度大幅提高。


最后总结一下各大算法的步骤:
RCNN
  1. 在图像中确定约1000-2000个候选框 (使用选择性搜索)
  2. 每个候选框内图像块缩放至相同大小,并输入到CNN内进行特征提取 
  3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 
  4. 对于属于某一特征的候选框,用回归器进一步调整其位置

Fast RCNN
  1. 在图像中确定约1000-2000个候选框 (使用选择性搜索)
  2. 对整张图片输进CNN,得到feature map
  3. 找到每个候选框在feature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层
  4. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 
  5. 对于属于某一特征的候选框,用回归器进一步调整其位置

Faster RCNN
  1. 对整张图片输进CNN,得到feature map
  2. 卷积特征输入到RPN,得到候选框的特征信息
  3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 
  4. 对于属于某一特征的候选框,用回归器进一步调整其位置

 

 

总的来说,从R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN一路走来,基于深度学习目标检测的流程变得越来越精简,精度越来越高,速度也越来越快。可以说基于region proposal的R-CNN系列目标检测方法是当前目标检测技术领域最主要的一个分支。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/458098.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iPhone屏幕尺寸/launch尺寸/icon尺寸

屏幕尺寸 6p/6sp 414 X 7366/6s 375 X 6675/5s 320 X 568 4/4s 320 X 480launch尺寸 6p/6sp 1242 X 2208 3x6/6s 750 X 1334 2x5/5s 640 X 1136 2x4/4s 640 X 960 2x仔细观察会发现l…

CNN的发展历史(LeNet,Alexnet,VGGNet,GoogleNet,ReSNet)

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需…

读取csv格式的数据

1.直接上代码&#xff0c;关键是会用 2.代码如下&#xff1a; <?php #添加推荐到英文站 $file fopen(code.csv,r); while ($data fgetcsv($file)) { //每次读取CSV里面的一行内容 //print_r($data); //此为一个数组&#xff0c;要获得每一个数据&#xff0c;访问数组下…

如何在VMWare的Ubuntu虚拟机中设置共享文件夹

亲测有效&#xff1a;Ubuntu18.04 LTS、虚拟机VMware Workstation 14 Pro 14.1.3 build-9474260、Window7 自己的第一篇博文&#xff0c;由于时&#xff08;shuǐ&#xff09;间&#xff08;png&#xff09;原&#xff08;yǒu&#xff09;因&#xff08;xin&#xff09;&…

容器+AOP实现动态部署(四)

上篇咱们介绍了容器和AOP的结合&#xff0c;结合后怎样将对象增强服务并没有过多的说明&#xff0c;这里将详细说明怎样将对象 进行增强 &#xff0c;达到一个一对多和多对多的增强方式 先从简单的方式说起 /** *JDK代理类&#xff0c;实现动态调用对象方法 */ public class JD…

caffe专题五——回归中——检测框架

https://blog.csdn.net/runner668/article/details/80436850

深入理解卷积层,全连接层的作用意义

有部分内容是转载的知乎的&#xff0c;如有侵权&#xff0c;请告知&#xff0c;删除便是&#xff0c;但由于是总结的&#xff0c;所以不一一列出原作者是who。 再次感谢&#xff0c;也希望给其他小白受益。 首先说明&#xff1a;可以不用全连接层的。 理解1&#xff1a; 卷…

用ionic快速开发hybird App(已附源码,在下面+总结见解)

用ionic快速开发hybird App&#xff08;已附源码,在下面总结见解&#xff09; 1.ionic简介 ionic 是用于敏捷开发APP的解决方案。核心思路是&#xff1a;利用成熟的前端开发技术&#xff0c;来写UI和业务逻辑。也就是说&#xff0c;就是一个H5网站&#xff0c;这个区别于react-…

为什么要使用工厂模式

工厂的作用相当于帮助我们完成实例化的操作。 优势1&#xff1a;一般在代码中&#xff0c;实例化一个类A是直接new A&#xff08;&#xff09;&#xff0c;假如类A是一个完全独立的类&#xff0c;没有相似类&#xff0c;则没有必要使用工厂模式&#xff0c;直接new A&#xff…

css各兼容应该注意的问题

1.div布局在ie浏览器和chrome浏览器&#xff0c;firefox浏览器不同&#xff0c;不如在div里面嵌套3个div&#xff0c;分别左中右&#xff0c;左边div的pading和margin在ie8以上都是几乎相同&#xff0c;ie8以下做内边距x2&#xff0c;在中间的div在chrome和fierfox中默认在左边…

转 C++宏定义详解

来自&#xff1a;传送门 C宏定义详解 一、#define的基本用法 #define是C语言中提供的宏定义命令&#xff0c;其主要目的是为程序员在编程时提供一定的方便&#xff0c;并能在一定程度上提高程序的运行效率&#xff0c;但学生在学习时往往不能 理解该命令的本质&#xff0c;总是…

acm之vim的基本配置

http://www.kuangbin.net/archives/vim-acmicpc 转载于:https://www.cnblogs.com/akrusher/articles/5402426.html

40 个重要的 HTML5 面试问题及答案

2019独角兽企业重金招聘Python工程师标准>>> 介绍 我是一个ASP.NET MVC开发人员。最近当我找工作的时候&#xff0c;我发现很多问题都是围绕HTML 5和它的新功能展开的。所以&#xff0c;下面我将列出40个有助于你提高相关HTML 5知识的重要问题。 这些问题并不能保证…

Java常见Jar包的用途

jar包 用途 axis.jar SOAP引擎包 commons-discovery-0.2.jar 用来发现、查找和实现可插入式接口&#xff0c;提供一些一般类实例化、单件的生命周期管理的常用方法. jaxrpc.jar Axis运行所需要的组件包 saaj.jar 创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法…

车流检测之halcon光流法算法实现

* This example program shows how to use optical_flow_mg to compute the optical flow in an image sequence and how to segment the optical flow. *这个示例程序显示了如何使用._flow_mg来计算图像序列中的光流&#xff0c;以及如何分割光流。 dev_update_off () dev_…

利用光学流跟踪关键点---30

原创博客:转载请标明出处:http://www.cnblogs.com/zxouxuewei/ 关键点&#xff1a;是多个方向上亮度变化强的区域。 opencv:版本是2.4. 光学流函数&#xff1a;calcOpticalFlowPyrLK()。&#xff08;关键点侦测器使用goodFeaturesToTrack()&#xff09;二者结合。 相应的启动文…

基于Redis、Storm的实时数据查询实践

通过算法小组给出的聚合文件&#xff0c;我们需要实现一种业务场景&#xff0c;通过用户的消费地点的商户ID与posId&#xff0c;查询出他所在的商圈&#xff0c;并通过商圈地点查询出与该区域的做活动的商户&#xff0c;并与之进行消息匹配&#xff0c;推送相应活动信息到用户手…

从离散值中把值相近的放在一起

//30根细条得到30个长度值&#xff0c;选择出现值相近且出现次数最多的&#xff0c;算其均值作为输出 #include <iostream> using namespace std;int main() {double dRawdata[5] {1.1,1.2,1.3,2.5,3.2};//先升序排序double dSort[5][5] {0};double* p dRawdata;int a…

register_globals(全局变量注册开关)

register_globals&#xff0c;是php.ini文件里面的一个配置选项&#xff0c;接下来&#xff0c;我们可以通过例程来分析一下&#xff0c;当register_globals on 与 register_globals off 的时候&#xff0c;对php语言的一些安全影响。测试源代码如下&#xff1a;index.html 源…