解读SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC

SPP与SPPF
一、SPP的应用的背景
在卷积神经网络中我们经常看到固定输入的设计,但是如果我们输入的不能是固定尺寸的该怎么办呢?

通常来说,我们有以下几种方法:

(1)对输入进行resize操作,让他们统统变成你设计的层的输入规格那样。但是这样过于暴力直接,可能会丢失很多信息或者多出很多不该有的信息(图片变形等),影响最终的结果。

(2)替换网络中的全连接层,对最后的卷积层使用global average pooling,全局平均池化只和通道数有关,而与特征图大小没有关系

(3)最后一个当然是我们要讲的SPP结构

Note:
但是在yolov5中SPP/SPPF作用是:实现局部特征和全局特征的featherMap级别的融合。

二、SPP结构分析
SPP结构又被称为空间金字塔池化,能将任意大小的特征图转换成固定大小的特征向量。

接下来我们来详述一下SPP是怎么处理滴~

输入层:首先我们现在有一张任意大小的图片,其大小为w * h。

输出层:21个神经元 – 即我们待会希望提取到21个特征。

分析如下图所示:分别对1 * 1分块,2 * 2分块和4 * 4子图里分别取每一个框内的max值(即取蓝框框内的最大值),这一步就是作最大池化,这样最后提取出来的特征值(即取出来的最大值)一共有1 * 1 + 2 * 2 + 4 * 4 = 21个。得出的特征再concat在一起。

在这里插入图片描述
而在YOLOv5中SPP的结构图如下图所示:
在这里插入图片描述
其中,前后各多加一个CBL,中间的kernel size分别为1 * 1,5 * 5,9 * 9和13 * 13。

三、SPPF结构分析
CBL(conv+BN+Leaky relu)改成CBS(conv+BN+SiLU)哈,之前没注意它的名称变化。
在这里插入图片描述
四、YOLOv5中SPP/SPPF结构源码解析(内含注释分析)

代码注释与上图的SPP结构相对应。

class SPP(nn.Module):def __init__(self, c1, c2, k=(5, 9, 13)):#这里5,9,13,就是初始化的kernel sizesuper().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)#这里对应第一个CBLself.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)#这里对应SPP操作里的最后一个CBLself.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])#这里对应SPP核心操作,对5 * 5分块,9 * 9分块和13 * 13子图分别取最大池化def forward(self, x):x = self.cv1(x)with warnings.catch_warnings():warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning忽略警告return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))#torch.cat对应concat
# SPPF结构
class SPPF(nn.Module):# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocherdef __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))super().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * 4, c2, 1, 1)self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)def forward(self, x):x = self.cv1(x)#先通过CBL进行通道数的减半with warnings.catch_warnings():warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warningy1 = self.m(x)y2 = self.m(y1)#上述两次最大池化return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))#将原来的x,一次池化后的y1,两次池化后的y2,3次池化的self.m(y2)先进行拼接,然后再CBL

实验对比
下面做个简单的小实验,对比下SPP和SPPF的计算结果以及速度,代码如下(注意这里将SPPF中最开始和结尾处的1x1卷积层给去掉了,只对比含有MaxPool的部分):

import time
import torch
import torch.nn as nnclass SPP(nn.Module):def __init__(self):super().__init__()self.maxpool1 = nn.MaxPool2d(5, 1, padding=2)self.maxpool2 = nn.MaxPool2d(9, 1, padding=4)self.maxpool3 = nn.MaxPool2d(13, 1, padding=6)def forward(self, x):o1 = self.maxpool1(x)o2 = self.maxpool2(x)o3 = self.maxpool3(x)return torch.cat([x, o1, o2, o3], dim=1)class SPPF(nn.Module):def __init__(self):super().__init__()self.maxpool = nn.MaxPool2d(5, 1, padding=2)def forward(self, x):o1 = self.maxpool(x)o2 = self.maxpool(o1)o3 = self.maxpool(o2)return torch.cat([x, o1, o2, o3], dim=1)def main():input_tensor = torch.rand(8, 32, 16, 16)spp = SPP()sppf = SPPF()output1 = spp(input_tensor)output2 = sppf(input_tensor)print(torch.equal(output1, output2))t_start = time.time()for _ in range(100):spp(input_tensor)print(f"spp time: {time.time() - t_start}")t_start = time.time()for _ in range(100):sppf(input_tensor)print(f"sppf time: {time.time() - t_start}")if __name__ == '__main__':main()"""运行结果"""
True
spp time: 0.5373051166534424
sppf time: 0.20780706405639648

更多类型的SPP
1.1 SPP(Spatial Pyramid Pooling)
SPP模块是何凯明大神在2015年的论文《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》中被提出。

SPP全程为空间金字塔池化结构,主要是为了解决两个问题:

有效避免了对图像区域裁剪、缩放操作导致的图像失真等问题;
解决了卷积神经网络对图相关重复特征提取的问题,大大提高了产生候选框的速度,且节省了计算成本。

在这里插入图片描述
在这里插入图片描述

class SPP(nn.Module):# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729def __init__(self, c1, c2, k=(5, 9, 13)):super().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])def forward(self, x):x = self.cv1(x)with warnings.catch_warnings():warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warningreturn self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

1.2 SPPF(Spatial Pyramid Pooling - Fast)
这个是YOLOv5作者Glenn Jocher基于SPP提出的,速度较SPP快很多,所以叫SPP-Fast

在这里插入图片描述

class SPPF(nn.Module):# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocherdef __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))super().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * 4, c2, 1, 1)self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)def forward(self, x):x = self.cv1(x)with warnings.catch_warnings():warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warningy1 = self.m(x)y2 = self.m(y1)return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

1.3 SimSPPF(Simplified SPPF)
美团YOLOv6提出的模块,感觉和SPPF只差了一个激活函数,简单测试了一下,单个ConvBNReLU速度要比ConvBNSiLU快18%

在这里插入图片描述

class SimConv(nn.Module):'''Normal Conv with ReLU activation'''def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False):super().__init__()padding = kernel_size // 2self.conv = nn.Conv2d(in_channels,out_channels,kernel_size=kernel_size,stride=stride,padding=padding,groups=groups,bias=bias,)self.bn = nn.BatchNorm2d(out_channels)self.act = nn.ReLU()def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class SimSPPF(nn.Module):'''Simplified SPPF with ReLU activation'''def __init__(self, in_channels, out_channels, kernel_size=5):super().__init__()c_ = in_channels // 2  # hidden channelsself.cv1 = SimConv(in_channels, c_, 1, 1)self.cv2 = SimConv(c_ * 4, out_channels, 1, 1)self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)def forward(self, x):x = self.cv1(x)with warnings.catch_warnings():warnings.simplefilter('ignore')y1 = self.m(x)y2 = self.m(y1)return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

1.4 ASPP(Atrous Spatial Pyramid Pooling)
受到SPP的启发,语义分割模型DeepLabv2中提出了ASPP模块(空洞空间卷积池化金字塔),该模块使用具有不同采样率的多个并行空洞卷积层。为每个采样率提取的特征在单独的分支中进一步处理,并融合以生成最终结果。该模块通过不同的空洞率构建不同感受野的卷积核,用来获取多尺度物体信息,具体结构比较简单如下图所示:
在这里插入图片描述
ASPP是在DeepLab中提出来的,在后续的DeepLab版本中对其做了改进,如加入BN层、加入深度可分离卷积等,但基本的思路还是没变。

# without BN version
class ASPP(nn.Module):def __init__(self, in_channel=512, out_channel=256):super(ASPP, self).__init__()self.mean = nn.AdaptiveAvgPool2d((1, 1))  # (1,1)means ouput_dimself.conv = nn.Conv2d(in_channel,out_channel, 1, 1)self.atrous_block1 = nn.Conv2d(in_channel, out_channel, 1, 1)self.atrous_block6 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=6, dilation=6)self.atrous_block12 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=12, dilation=12)self.atrous_block18 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=18, dilation=18)self.conv_1x1_output = nn.Conv2d(out_channel * 5, out_channel, 1, 1)def forward(self, x):size = x.shape[2:]image_features = self.mean(x)image_features = self.conv(image_features)image_features = F.upsample(image_features, size=size, mode='bilinear')atrous_block1 = self.atrous_block1(x)atrous_block6 = self.atrous_block6(x)atrous_block12 = self.atrous_block12(x)atrous_block18 = self.atrous_block18(x)net = self.conv_1x1_output(torch.cat([image_features, atrous_block1, atrous_block6,atrous_block12, atrous_block18], dim=1))return net

1.5 RFB(Receptive Field Block)
RFB模块是在《ECCV2018:Receptive Field Block Net for Accurate and Fast Object Detection》一文中提出的,该文的出发点是模拟人类视觉的感受野从而加强网络的特征提取能力,在结构上RFB借鉴了Inception的思想,主要是在Inception的基础上加入了空洞卷积,从而有效增大了感受野

在这里插入图片描述
在这里插入图片描述
RFB和RFB-s的架构。RFB-s用于在浅层人类视网膜主题图中模拟较小的pRF,使用具有较小内核的更多分支。

class BasicConv(nn.Module):def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True):super(BasicConv, self).__init__()self.out_channels = out_planesif bn:self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True)self.relu = nn.ReLU(inplace=True) if relu else Noneelse:self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)self.bn = Noneself.relu = nn.ReLU(inplace=True) if relu else Nonedef forward(self, x):x = self.conv(x)if self.bn is not None:x = self.bn(x)if self.relu is not None:x = self.relu(x)return xclass BasicRFB(nn.Module):def __init__(self, in_planes, out_planes, stride=1, scale=0.1, map_reduce=8, vision=1, groups=1):super(BasicRFB, self).__init__()self.scale = scaleself.out_channels = out_planesinter_planes = in_planes // map_reduceself.branch0 = nn.Sequential(BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False),BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups),BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision, dilation=vision, relu=False, groups=groups))self.branch1 = nn.Sequential(BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False),BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups),BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 2, dilation=vision + 2, relu=False, groups=groups))self.branch2 = nn.Sequential(BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False),BasicConv(inter_planes, (inter_planes // 2) * 3, kernel_size=3, stride=1, padding=1, groups=groups),BasicConv((inter_planes // 2) * 3, 2 * inter_planes, kernel_size=3, stride=stride, padding=1, groups=groups),BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 4, dilation=vision + 4, relu=False, groups=groups))self.ConvLinear = BasicConv(6 * inter_planes, out_planes, kernel_size=1, stride=1, relu=False)self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)self.relu = nn.ReLU(inplace=False)def forward(self, x):x0 = self.branch0(x)x1 = self.branch1(x)x2 = self.branch2(x)out = torch.cat((x0, x1, x2), 1)out = self.ConvLinear(out)short = self.shortcut(x)out = out * self.scale + shortout = self.relu(out)return out

1.6 SPPCSPC
该模块是YOLOv7中使用的SPP结构,表现优于SPPF,但参数量和计算量提升了很多
在这里插入图片描述

class SPPCSPC(nn.Module):# CSP https://github.com/WongKinYiu/CrossStagePartialNetworksdef __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):super(SPPCSPC, self).__init__()c_ = int(2 * c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(c_, c_, 3, 1)self.cv4 = Conv(c_, c_, 1, 1)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])self.cv5 = Conv(4 * c_, c_, 1, 1)self.cv6 = Conv(c_, c_, 3, 1)self.cv7 = Conv(2 * c_, c2, 1, 1)def forward(self, x):x1 = self.cv4(self.cv3(self.cv1(x)))y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))y2 = self.cv2(x)return self.cv7(torch.cat((y1, y2), dim=1))
#分组SPPCSPC 分组后参数量和计算量与原本差距不大,不知道效果怎么样
class SPPCSPC_group(nn.Module):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):super(SPPCSPC_group, self).__init__()c_ = int(2 * c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1, g=4)self.cv2 = Conv(c1, c_, 1, 1, g=4)self.cv3 = Conv(c_, c_, 3, 1, g=4)self.cv4 = Conv(c_, c_, 1, 1, g=4)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])self.cv5 = Conv(4 * c_, c_, 1, 1, g=4)self.cv6 = Conv(c_, c_, 3, 1, g=4)self.cv7 = Conv(2 * c_, c2, 1, 1, g=4)def forward(self, x):x1 = self.cv4(self.cv3(self.cv1(x)))y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))y2 = self.cv2(x)return self.cv7(torch.cat((y1, y2), dim=1))

1.7 SPPFCSPC+
我借鉴了SPPF的思想将SPPCSPC优化了一下,得到了SPPFCSPC,在保持感受野不变的情况下获得速度提升;我把这个模块给v7作者看了,并没有得到否定,详细回答可以看4 Issue

目前这个结构被YOLOv6 3.0版本使用了,效果很不错,大家可以看一下YOLOv6 3.0的论文,里面有详细的实验结果。
在这里插入图片描述

class SPPFCSPC(nn.Module):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=5):super(SPPFCSPC, self).__init__()c_ = int(2 * c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(c_, c_, 3, 1)self.cv4 = Conv(c_, c_, 1, 1)self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)self.cv5 = Conv(4 * c_, c_, 1, 1)self.cv6 = Conv(c_, c_, 3, 1)self.cv7 = Conv(2 * c_, c2, 1, 1)def forward(self, x):x1 = self.cv4(self.cv3(self.cv1(x)))x2 = self.m(x1)x3 = self.m(x2)y1 = self.cv6(self.cv5(torch.cat((x1,x2,x3, self.m(x3)),1)))y2 = self.cv2(x)return self.cv7(torch.cat((y1, y2), dim=1))

2 参数量对比
这里我在yolov5s.yaml中使用各个模型替换SPP模块

在这里插入图片描述

搬运自知乎网址深度学习中小知识点系列(六) 解读SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/455068.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

go mongodb排序查询_《MongoDB》day two

Mongodb的更新方式有?db.集合名.update() 函数:用于更新已存在的文档。语法格式:db.COLLECTION_NAME.update({查询条件},{更新内容},{更新参数(可选)}) 注:这种方式会覆盖原有的文档。使用更新操作符 使用 save()函数更新文档 Mongodb的updat…

哈希表思路图解和代码实现

原文链接传送门 哈希表(散列)-Google上机题 看一个实际需求,google公司的一个上机题: 有一个公司,当有新的员工来报道时,要求将该员工的信息加入(id,性别,年龄,住址…),当输入该员工的id时,要求查找到该员工的 所有信息. 要求: 不使用数据库,尽量节省内存,速度越…

glibc交叉编译_TSN之linuxptp交叉编译

0 开发环境1 linuxptp是什么2 为什么要交叉编译linuxptp3 修改makefile4 修改源码5 交叉编译0 开发环境笔记本:ubuntu18.04.5,内核版本为5.3 开发板:imx8mp-evk内核版本:Linux5.4.24交叉编译工具链:fsl-imx-xwayland-g…

声音编码

1.脉冲编码调制PCM文件格式简介 将音频数字化,其实就是将声音数字化。最常见的方式是透过脉冲编码调制PCM(Pulse Code Modulation) 。运作原理如下。首先我们考虑声音经过麦克风,转换成一连串电压变化的信号,如图一所示。这张图的横座标为秒&…

Elastic Stack简介

Elastic Stack简介 如果你没有听说过Elastic Stack,那你一定听说过ELK,实际上ELK是三款软件的简称,分别是Elasticsearch、 Logstash、Kibana组成,在发展的过程中,又有新成员Beats的加入,所以就形成了Elast…

webpack v3 结合 react-router v4 做 dynamic import — 按需加载(懒加载)

为什么要做dynamic import? dynamic import不知道为什么有很多叫法,什么按需加载,懒加载,Code Splitting,代码分页等。总之,就是在SPA,把JS代码分成N个页面份数的文件,不在用户刚进来…

go kegg_工具篇丨GO和KEGG富集不到通路?快试试这个超赞的功能分析工具吧

GO和KEGG富集分析是我们在筛选出差异表达基因之后,都会去做的套路性分析。然鹅……我相信,总有那么一些“倒霉孩子”会遇到跟我一样的窘境吧,好不容易筛选出来的差异基因,尝试了DAVID(https://david.ncifcrf.gov/)、Metascape(htt…

搭建Telnet服务器

搭建Telnet服务器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任。 可能大家都知道现在已经很少有人用TELNET服务器, 因为它传输数据是以明文的方式,我们很容易通过抓包软件讲数据进行抓包&a…

table取tr对象 vue_Vue笔记

Vue集成了React和Angular的优点,摒弃了他们的缺点。Vue的官网:https://cn.vuejs.org/v2/api/Vue诞生于2016年,是现在非常流行的MVVM框架。Vue提供了“引包”的使用方法,初学者可以在这之下学习语法。不需要webpack,不需…

Beats入门简介

使用Beat收集nginx日志和指标数据 项目需求 Nginx是一款非常优秀的web服务器,往往nginx服务会作为项目的访问入口,那么,nginx的性能保障就变得非常重要了,如果nginx的运行出现了问题就会对项目有较大的影响,所以&…

可编程led灯带原理_SCPSD-250-04-27派克真空压力传感器故障和工作原理

SCPSD-250-04-27派克PARKER真空压力传感器故障和工作原理PARKER压力开关现货 PARKER压力传感器特价 派克真空压力传感器 PARKER数字压力开关2020年还剩最后2天了,这一年大家都过得不太容易,尤其是我自己这是30年以来过得最艰难的一年,经…

Kibana入门安装与介绍

Kibana入门 Kibana 是一款开源的数据分析和可视化平台,它是 Elastic Stack 成员之一,设计用于和 Elasticsearch 协作。您可以使用 Kibana 对 Elasticsearch 索引中的数据进行搜索、查看、交互操作。您可以很方便的利用图表、表格及地图对数据进行多元化…

友善串口工具接收数据随机换行_使用Python3+PyQT5+Pyserial 实现简单的串口工具方法...

练手项目,先上图先实现一个简单的串口工具,为之后的上位机做准备代码如下:pyserial_demo.pyimport sys import serial import serial.tools.list_ports from PyQt5 import QtWidgets from PyQt5.QtWidgets import QMessageBox from PyQt5.QtC…

Vue渲染函数

前面的话 Vue 推荐在绝大多数情况下使用 template 来创建HTML。然而在一些场景中,真的需要 JavaScript 的完全编程的能力,这就是 render 函数,它比 template 更接近编译器。本文将详细介绍Vue渲染函数 引入 下面是一个例子,如果要…

Logstash入门简介

Logstash入门简介 介绍 Logstash是一个开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到最喜欢的存储库中(我们的存储库当然是ElasticSearch) 我们回到我们ElasticStack的架构图&a…

Django templates 和 urls 拆分

如果在Django项目 下面新建了blog和polls两个APP应用,在每个APP下面都各自新建自己的url和templates,那么我们需要如何进行项目配置呢? INSTALLED_APPS [ django.contrib.admin, django.contrib.auth, django.contrib.contenttypes, dja…

springboot怎么杀进程_线上服务平均响应时间太长,怎么排查?

线上服务平均响应时间太长,怎么排查?https://xie.infoq.cn/article/914b5c56000a3880016abd8d6前言:最近线上环境某个接口服务响应时间偏长,导致用户体验超差,那平时该怎么快速的排查这类问题呢?①、为代码…

MPEG音视频编解码之MP3编解码概述

2 MP3编解码原理 2.1 MP3音频压缩标准概述 MP3全称是动态影像专家压缩标准音频层面3(Moving Picture Experts Group Audio Layer III)。是当今较流行的一种数字音频编码和有损压缩格式,它设计用来大幅度地降低音频数据量,而对于…

Python实现GitBook工具

写在前面 本工具是通过Python脚本实现 GitBook 自动 生成 执行 编译 发布的功能 你可以在这里下载exe 使用 1. exe下载,并移动位置 将exe文件放在你的gitbook文件夹中,或者放在空文件夹中 2. file.md 创建 名为file.md的文件,在你要写book的目录下 注意: 这里file.md文件名…

shell脚本中用到的条件和循环语句

本博文介绍一下shell脚本中常用的条件和循环语句:条件语句:循环语句:示例:if语句:eg1.eg2.2.case语句:简单的case语句:配合循环的case语句:3.for语句:简单的for语句&…