C. Number of Pairs
You are given an array a of n integers. Find the number of pairs (i,j) (1≤i<j≤n) where the sum of ai+aj is greater than or equal to l and less than or equal to r (that is, l≤ai+aj≤r).
For example, if n=3, a=[5,1,2], l=4 and r=7, then two pairs are suitable:
i=1 and j=2 (4≤5+1≤7);
i=1 and j=3 (4≤5+2≤7).
Input
The first line contains an integer t (1≤t≤104). Then t test cases follow.
The first line of each test case contains three integers n,l,r (1≤n≤2⋅105, 1≤l≤r≤109) — the length of the array and the limits on the sum in the pair.
The second line contains n integers a1,a2,…,an (1≤ai≤109).
It is guaranteed that the sum of n overall test cases does not exceed 2⋅105.
Output
For each test case, output a single integer — the number of index pairs (i,j) (i<j), such that l≤ai+aj≤r.
Example
inputCopy
4
3 4 7
5 1 2
5 5 8
5 1 2 4 3
4 100 1000
1 1 1 1
5 9 13
2 5 5 1 1
outputCopy
2
7
0
1
之前没用过lower_bounder和upper_bounder 做题的时候没有想到。二分又懒得写。。。。。。
所以直接掉大分
#include <iostream>
#include <algorithm>
using namespace std;
#define int long long
int ch[205001];
signed main()
{int t;cin >> t;while (t--){int n, l, r;cin >> n >> l >> r;for (int i = 0; i < n; i++){cin >> ch[i];}sort(ch, ch + n);int sum = 0;for (int i = 0; i < n; i++){int a = lower_bound(ch + i + 1, ch + n, l - ch[i]) - ch;int b = upper_bound(ch + i + 1, ch + n, r - ch[i]) - ch;int c = b - a;sum += c;}cout << sum << endl;}
}
哭了。。。。。。