LOJ2718
BZOJ5415
洛谷P4768Rank3+Rank1无压力
BZOJ最初还不是一道权限题...
Update 2019.1.5
UOJ上被hack了....好像是纯一条链的数据过不了,不管了....现在不想改。
容易想到按高度Kruskal重构树+预处理到点1的距离dis。
建一棵最大生成树,如果随便建的话,如果非树边能走,整棵树都能走答案当然是0...;如果有些树边不能走,那么可走范围被限制在了某个连通块。
然而被限制在某个连通块和图(还要暴力,难道树分块?)没什么区别,所以我们可以让生成树边的高度由叶子向上递减,这样每次询问 找到深度最小的可行点后,答案就是其子树dis最小值(树形态显然不会影响什么)。
就是在Kruskal合并两个集合时,新建一个节点作为两集合的并的代表节点,最低高度mn为这条边权(当然不会比两集合中的大),dis为两集合dis的min。新树叶子节点即为原所有节点。
昨天一时zz怎么就觉得Kruskal不对呢。。
//8079ms 51424K(LOJ)
//洛谷 4860ms 50.49MB + 4392ms 50.33MB
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 400000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define mp std::make_pair
#define pr std::pair<int,int>
const int N=2e5+5,M=8e5+5,INF=0x7fffffff;int n,m,tot,Enum,H[N],nxt[M],to[M],len[M],dis[N],fa[N<<1][19],mn[N<<1],anc[N<<1],Ans[N<<1];
std::priority_queue<pr> q;
char IN[MAXIN],*SS=IN,*TT=IN;
struct Edge
{int fr,to,h;Edge() {}Edge(int fr,int to,int h):fr(fr),to(to),h(h) {}bool operator <(const Edge &x)const{return h>x.h;}
}e[M>>1];inline int read()
{int now=0;register char c=gc();for(;!isdigit(c);c=gc());for(;isdigit(c);now=now*10+c-'0',c=gc());return now;
}
inline void AddEdge(int _h,int w,int u,int v)
{to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, len[Enum]=w;e[Enum>>1]=Edge(u,v,_h);
}
void Dijkstra()
{static bool vis[N];memset(dis,0x3f,sizeof dis), memset(vis,0,sizeof vis);dis[1]=0, q.push(mp(0,1));while(!q.empty()){int x=q.top().second; q.pop();if(vis[x]) continue;vis[x]=1;for(int v,i=H[x]; i; i=nxt[i])if(dis[v=to[i]]>dis[x]+len[i])dis[v]=dis[x]+len[i], q.push(mp(-dis[v],v));}
}
int Get_fa(int x){return x==anc[x]?x:anc[x]=Get_fa(anc[x]);
}
void Kruskal()
{for(int i=1; i<=n; ++i) anc[i]=i, Ans[i]=dis[i];int m=Enum>>1; std::sort(e+1,e+1+m);for(int r1,r2,k=1,i=1; i<=m; ++i){if((r1=Get_fa(e[i].fr))==(r2=Get_fa(e[i].to))) continue;anc[r1]=anc[r2]=fa[r1][0]=fa[r2][0]=++tot, anc[tot]=fa[tot][0]=tot/*!*/;//清空新建的fa[tot]!(可能作为根节点)mn[tot]=e[i].h, Ans[tot]=std::min(Ans[r1],Ans[r2]);if(++k==n) break;}
}
void Init_ST()
{for(int i=1; i<=18; ++i)for(int x=1; x<=tot; ++x) fa[x][i]=fa[fa[x][i-1]][i-1];
}
inline int Solve(int p,int ht)
{for(int i=18; ~i; --i)if(mn[fa[p][i]]>ht) p=fa[p][i];return Ans[p];
}int main()
{
// freopen("return.in","r",stdin);
// freopen("return.out","w",stdout);int Case=read();while(Case--){Enum=0, memset(H,0,sizeof H);tot=n=read(), m=read();while(m--) AddEdge(read(),read(),read(),read());Dijkstra(), Kruskal(), Init_ST();int Q=read(),K=read(),S=read(),ans=0,pos,ht;if(K) while(Q--)pos=(read()+ans-1)%n+1,ht=(read()+ans)%(S+1),printf("%d\n",ans=Solve(pos,ht));else while(Q--)pos=read(),ht=read(),printf("%d\n",Solve(pos,ht));}return 0;
}