项目经济规模的估算方法_估算英国退欧的经济影响

项目经济规模的估算方法

On June 23 2016, the United Kingdom narrowly voted in a country-wide referendum to leave the European Union (EU). Economists at the time warned of economic losses; the Bank of England produced estimates that that GDP could be as much as 10.5% lower than the previous trend.

2016年6月23日,英国在全国范围的公民投票中以微弱的票数离开了欧盟(EU)。 当时的经济学家警告经济损失。 英格兰银行(BoE) 估计 ,GDP可能比以前的趋势低10.5%。

Image for post

The latest update from the Bank of England has lowered estimates: a 5.5% loss of GDP is now expected if a no-deal Brexit were to occur.

英格兰银行的最新消息降低了预期:如果无协议脱欧,现在预计GDP将下降5.5%。

The divorce has yet to happen of course, dragging on for three and a half years with no clear end in sight. However, the uncertainty and expectation that the UK will eventually succeed in leaving the EU is able to cause substantial harm to the economy even before the official withdrawal occurs. Here, I will be using Synthetic Control Method to produce a model that can estimate the economic impacts of Brexit so far. If you are simply interested in seeing the results and don’t care for the methodology, skip to the Conclusion section at the bottom.

离婚当然还没有发生,拖延了三年半,没有明确的结局。 但是,即使英国正式退出欧盟,英国最终能否成功退出欧盟的不确定性和期望仍可能对经济造成重大损害。 在这里,我将使用综合控制方法生成一个模型,该模型可以估计到目前为止英国脱欧的经济影响。 如果您只是对查看结果感兴趣,而不关心方法论,请跳至底部的结论部分。

方法 (Methodology)

For a sample of potential donor countries to form the synthetic control, I used all current OECD countries. The OECD consists of 36 mostly developed countries. Using OECD countries allows me to pull from OECD Data.

为了对潜在的捐助国进行综合控制,我使用了所有经合组织国家作为样本。 经合组织由36个最发达国家组成。 使用OECD国家可以使我从OECD数据中受益。

In constructing the synthetic control, I will be using the Synth package for R.

在构建综合控件时,我将使用Synth包用于R。

Selection of Predictors

预测变量的选择

To form the synthetic control, we need to include several variables that are predictive of our outcome variable (Real Gross Domestic Product per capita). I collected data on the following variables:

为了形成综合控制,我们需要包括几个可以预测结果变量(人均实际国内生产总值)的变量。 我收集了以下变量的数据:

  • Exports as a percentage of GDP

    出口占GDP的百分比
  • Employment rate

    就业率
  • Working age population as a percentage of the total population. The working age population is defined as aged 15–64.

    劳动年龄人口占总人口的百分比。 劳动年龄人口定义为15-64岁。
  • Human capital. Specifically, the percentage of 25–34 year old’s with tertiary education.

    人力资本。 具体来说,是25-34岁的大专以上学历的百分比。

Selection of Donor States

选择捐助国

In this process, any other countries that underwent a similar intervention should be removed. Luckily, no other countries have left the EU. As the OECD is mostly formed of relatively similar developed countries, I will not remove any from the sample.

在此过程中,任何接受过类似干预的国家都应删除。 幸运的是,没有其他国家离开欧盟。 由于经合组织主要由相对类似的发达国家组成,因此我不会从样本中删除任何内容。

Optimization Algorithm

优化算法

I will leave this as the default setting, which takes the best result from Nelder-Mead and BFGS. Nelder-Mead produces a better result in this case.

我将其保留为默认设置,它将获得Nelder-Mead和BFGS的最佳效果。 在这种情况下,Nelder-Mead会产生更好的结果。

I will optimize the model from 2000 to 2015.

我将从2000年到2015年对模型进行优化。

综合控制 (The Synthetic Control)

After running the function, we can review the synthetic control it has produced. The function has selected the following weights for our predictors:

运行该函数后,我们可以查看它产生的综合控件。 该函数为我们的预测变量选择了以下权重:

Image for post

Note the synthetic is virtually identical to the UK in our predictor variables:

请注意,在我们的预测变量中,合成实际上与英国相同:

Image for post

The synthetic is primarily composed of Japan (35%), Iceland (21.5%), and the US (14.4%) with smaller weights coming from several other countries. We can now see that our synthetic does a fairly good job of following the trends of the UK.

合成纤维主要由日本(35%),冰岛(21.5%)和美国(14.4%)组成,其重量较小来自其他几个国家。 现在我们可以看到,我们的合成材料在追随英国趋势方面做得相当不错。

Image for post

The period from 2002 to 2005 shows some deviation, but overall the result looks okay. The model has a Mean Squared Prediction Error (MSPE) of 214,588.

从2002年到2005年这段时期显示出一些偏差,但总体而言结果还不错。 该模型的均方预测误差(MSPE)为214,588。

结果 (Results)

We can now see a plot of the UK against the synthetic control extended to 2018.

现在我们可以看到英国针对合成控制的情节延至2018年。

Image for post

The vertical red line represents the last year before the intervention (when the referendum took place).

垂直的红线表示干预前的最后一年(举行公民投票时)。

The size of the graph makes it it difficult to assess, so we are also able to view a plot of the gaps between the synthetic and the UK to view more easily view the differences:

该图的大小使其难以评估,因此我们还可以查看合成图和英国之间的差距图,从而更轻松地查看差异:

Image for post

The model uses annual GDP, where the last year is 2018. As of this date, the UK has lost approximately $1500 per capita according to this estimate. While this model does suggest UK GDP is lower due to Brexit, the fact that the UK and the synthetic control don’t perfectly track each other means we can’t be certain of the magnitude. However, given weak GDP growth so far in 2019, we are likely to see the damage continue to grow.

该模型使用的年度GDP(去年是2018年)。根据该估计,截至该日期,英国人均损失了大约1500美元。 尽管该模型确实表明英国脱欧导致英国GDP下降,但英国和综合控制机构之间无法很好地相互追踪这一事实意味着我们无法确定其幅度。 但是,鉴于2019年迄今为止GDP增长疲软 ,我们很可能看到损失继续增加。

These results are broadly in line with results from most experts; two economists from the London School of Economics noted the UK has experienced slow-downs in GDP, investment, productivity growth, and a weakened currency since the referendum.

这些结果与大多数专家的结果基本一致; 伦敦经济学院的两位经济学家指出 ,自公投以来, 英国的 GDP,投资,生产率增长和货币走弱都经历了放缓。

结论 (Conclusion)

  • This analysis suggests the UK has already experienced a significant economic hit due to the Brexit referendum

    该分析表明,由于英国退欧公投,英国已经遭受了重大的经济打击
  • The UK has likely lost about $1500 per person of GDP from the impacts of Brexit so far

    迄今为止,英国可能因英国脱欧的影响而使每人GDP损失约1500美元
  • If the UK had not voted to leave the EU, UK GDP per capita would likely be about 3.25% higher than it is right now

    如果英国没有投票决定退出欧盟,那么英国人均GDP可能会比目前高出约3.25%。
  • The economic damages are likely to get worse as the saga continues, and 2019 was very possibly the worst year for the UK economy yet

    随着传奇的继续,经济损失可能会变得更糟,2019年很可能是英国经济最糟糕的一年

翻译自: https://medium.com/economic-watch/estimating-the-economic-impact-of-brexit-5fbbf7258790

项目经济规模的估算方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391466.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Oracle宣布新的Java Champions

\看新闻很累?看技术新闻更累?试试下载InfoQ手机客户端,每天上下班路上听新闻,有趣还有料!\\\Oracle宣布了2017年新接纳的Java Champion的综述。这次宣布了40位新的成员,包括InfoQ的贡献者Monica Beckwith。…

lambda ::_您无法从这里到达那里:Netlify Lambda和Firebase如何使我陷入无服务器的死胡同

lambda ::[Update: Apparently you can get there from here! That is, if you use firebase-admin instead of google-cloud/firestore. Ill have more on this in the future, but the gist of it is summarized here.][ 更新:显然您可以从这里到达那里&#xff…

leetcode 264. 丑数 II(堆)

给你一个整数 n ,请你找出并返回第 n 个 丑数 。 丑数 就是只包含质因数 2、3 和/或 5 的正整数。 示例 1: 输入:n 10 输出:12 解释:[1, 2, 3, 4, 5, 6, 8, 9, 10, 12] 是由前 10 个丑数组成的序列。 解题思路 维…

奇迹网站可视化排行榜]_外观可视化奇迹

奇迹网站可视化排行榜]When reading a visualization is what we see really what we get?阅读可视化内容时,我们真正看到的是什么? This post summarizes and accompanies our paper “Surfacing Visualization Mirages” that was presented at CHI …

Oracle自动性能统计

Oracle自动性能统计 高效诊断性能问题,需要提供完整可用的统计信息,好比医生给病人看病的望闻问切,才能够正确的确诊,然后再开出相应的药方。Oracle数据库为系统、会话以及单独的sql语句生成多种类型的累积统计信息。本文主要描述…

numpy2

1、通用函数,是一种在ndarray数据中进行逐元素操作的函数。某些函数接受一个或多个标量数值,并产生一个或多个标量结果,通用函数就是对这些函数的封装。 1、常用的一元通用函数有:abs\fabs  sqrt   square  exp  log\log2…

Apache Prefork、Worker和Event三种MPM简单分析

(1) Prefork MPM (优点) :使用多个子进程,每个子进程只有一个线程来处理一个 http 连接,不用担心线程安全问题缺点:内存消耗大,不擅长处理高并发环境,使用keep-alive长连接时要等到超…

grasshopper_如何使用Google的Grasshopper编码应用程序来学习手机上的编码基础知识...

grasshopper什么是蚱hopper? (What is Grasshopper?) Grasshopper is an interactive education app for learning about coding. It began at Google as an experimental project created by a group called Area 120. Grasshopper是一个用于学习编码的交互式教育…

机器学习 量子_量子机器学习:神经网络学习

机器学习 量子My last articles tackled Bayes nets on quantum computers (read it here!), and k-means clustering, our first steps into the weird and wonderful world of quantum machine learning.我的最后一篇文章讨论了量子计算机上的贝叶斯网络( 在这里阅读&#xf…

leetcode 179. 最大数(排序)

给定一组非负整数 nums,重新排列每个数的顺序(每个数不可拆分)使之组成一个最大的整数。 注意:输出结果可能非常大,所以你需要返回一个字符串而不是整数。 示例 1: 输入:nums [10,2] 输出&a…

test3

test3 转载于:https://www.cnblogs.com/Forever77/p/11441068.html

linux渗透测试_渗透测试:选择正确的(Linux)工具栈来修复损坏的IT安全性

linux渗透测试Got IT infrastructure? Do you know how secure it is? The answer will probably hurt, but this is the kind of bad news you’re better off getting sooner rather than later.有IT基础架构吗? 你知道它有多安全吗? 答案可能会很痛…

BZOJ 1176: [Balkan2007]Mokia

一道CDQ分治的模板题,然而我De了一上午Bug...... 按时间分成左右两半,按x坐标排序然后把y坐标丢到树状数组里,扫一遍遇到左边的就add,遇到右边的query 几个弱智出了bug的点, 一是先分了左右两半再排序,保证的是这次的左…

深入理解InnoDB(1)—行的存储结构

1.InnoDB页的简介 页(Page)是 Innodb 存储引擎用于管理数据的最小磁盘单位。常见的页类型有数据页、Undo 页、系统页、事务数据页等 2.InnoDB行的存储格式 我们插入MySQL的记录在InnoDB中可能以4中行格式存储,分别是Compact、Redundant、D…

做嵌入式的必须学Android吗

做嵌入式的必须学Android吗Android方向适合哪些人呢?适合那些已经在自己领域有了一定的工作经验的人,适合作为自己的拓展,适合提升自己的能力,譬如说已经做三年Linux驱动,就可以尝试拓展去做Android驱动首先从技术角度…

test4

test4 转载于:https://www.cnblogs.com/Forever77/p/11441980.html

boltzmann_推荐系统系列第7部分:用于协同过滤的Boltzmann机器的3个变体

boltzmannRecSys系列 (RecSys Series) Update: This article is part of a series where I explore recommendation systems in academia and industry. Check out the full series: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, and Part 7.更新: 本文是我探索…

.net 初学者_在此初学者课程中学习使用TensorFlow 2.0开发神经网络

.net 初学者Learn how to use TensorFlow 2.0 in this full video course from Tech with Tim. This course will show you how to create neural networks with Python and TensorFlow 2.0.在Tech与Tim的完整视频课程中,学习如何使用TensorFlow 2.0。 本课程将向您…

AndroidStudio怎样导入library项目开源库 - 转

https://jingyan.baidu.com/article/1974b2898917aff4b1f77415.html转载于:https://www.cnblogs.com/EasyLive2006/p/7477719.html

深入理解InnoDB(2)—页的存储结构

1. 记录头信息 上一篇博客说到每行记录都会有记录头信息,用来记录每一行的一些属性 Compact行记录的记录头信息为例 1.1 delete_mask 这个属性标记着当前记录是否被删除,占用1个二进制位,值为0的时候代表记录并没有被删除,为1的…