BP神经网络反向传播手动推导

BP神经网络过程:

基本思想

BP算法是一个迭代算法,它的基本思想如下:

  1. 将训练集数据输入到神经网络的输入层,经过隐藏层,最后达到输出层并输出结果,这就是前向传播过程。
  2. 由于神经网络的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;
  3. 在反向传播的过程中,根据误差调整各种参数的值(相连神经元的权重),使得总损失函数减小。
  4. 迭代上述三个步骤(即对数据进行反复训练),直到满足停止准则。

梯度下降法

在这里插入图片描述
紫色部分:正确结果与节点输出结果的差值,也就是误差;
红色部分:节点的激活函数,所有输入该节点的链路把经过其上的信号与链路权重做乘积后加总,再把加总结果进行激活函数运算;
绿色部分:链路w(jk)前端节点输出的信号值。

神经网络训练过程实例

  1. 第一层是输入层,包含两个神经元:i1,i2 和偏置b1;
  2. 第二层是隐藏层,包含两个神经元:h1,h2 和偏置项b2;
  3. 第三层是输出:o1,o2。
  4. 每条线上标的 wi 是层与层之间连接的权重。
  5. 激活函数是 sigmod 函数。
  6. 我们用 z 表示某神经元的加权输入和;用 a 表示某神经元的输出。
    在这里插入图片描述

Step 1 前向传播

输入层 —> 隐藏层

在这里插入图片描述

隐藏层 —> 输出层

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Step 2 反向传播

计算损失函数:

在这里插入图片描述

隐藏层 —> 输出层的权值更新

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

输入层 —> 隐藏层的权值更新

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这样,反向传播算法就完成了,最后我们再把更新的权值重新计算,不停地迭代。 在这个例子中第一次迭代之后,总误差0.298371109下降至0.291027924。
迭代10000次后,总误差为0.000035085。输出为:[0.015912196, 0.984065734]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389264.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用python和pandas进行同类群组分析

背景故事 (Backstory) I stumbled upon an interesting task while doing a data exercise for a company. It was about cohort analysis based on user activity data, I got really interested so thought of writing this post.在为公司进行数据练习时,我偶然发…

搜索引擎优化学习原理_如何使用数据科学原理来改善您的搜索引擎优化工作

搜索引擎优化学习原理Search Engine Optimisation (SEO) is the discipline of using knowledge gained around how search engines work to build websites and publish content that can be found on search engines by the right people at the right time.搜索引擎优化(SEO…

Siamese网络(孪生神经网络)详解

SiameseFCSiamese网络(孪生神经网络)本文参考文章:Siamese背景Siamese网络解决的问题要解决什么问题?用了什么方法解决?应用的场景:Siamese的创新Siamese的理论Siamese的损失函数——Contrastive Loss损失函…

Dubbo 源码分析 - 服务引用

1. 简介 在上一篇文章中,我详细的分析了服务导出的原理。本篇文章我们趁热打铁,继续分析服务引用的原理。在 Dubbo 中,我们可以通过两种方式引用远程服务。第一种是使用服务直联的方式引用服务,第二种方式是基于注册中心进行引用。…

一件登录facebook_我从Facebook的R教学中学到的6件事

一件登录facebookBetween 2018 to 2019, I worked at Facebook as a data scientist — during that time I was involved in developing and teaching a class for R beginners. This was a two-day course that was taught about once a month to a group of roughly 15–20 …

SiameseFC超详解

SiameseFC前言论文来源参考文章论文原理解读首先要知道什么是SOT?(Siamese要做什么)SiameseFC要解决什么问题?SiameseFC用了什么方法解决?SiameseFC网络效果如何?SiameseFC基本框架结构SiameseFC网络结构Si…

Python全栈工程师(字符串/序列)

ParisGabriel Python 入门基础字符串:str用来记录文本信息字符串的表示方式:在非注释中凡是用引号括起来的部分都是字符串‘’ 单引号“” 双引号 三单引""" """ 三双引有内容代表非空字符串否则是空字符串 区别&#xf…

跨库数据表的运算

跨库数据表的运算,一直都是一个说难不算太难,说简单却又不是很简单的、总之是一个麻烦的事。大量的、散布在不同数据库中的数据表们,明明感觉要把它们合并起来,再来个小小的计算,似乎也就那么回事……但真要做起来&…

熊猫在线压缩图_回归图与熊猫和脾气暴躁

熊猫在线压缩图数据可视化 (Data Visualization) I like the plotting facilities that come with Pandas. Yes, there are many other plotting libraries such as Seaborn, Bokeh and Plotly but for most purposes, I am very happy with the simplicity of Pandas plotting…

SiameseRPN详解

SiameseRPN论文来源论文背景一,简介二,研究动机三、相关工作论文理论注意:网络结构:1.Siamese Network2.RPN3.LOSS计算4.Tracking论文的优缺点分析一、Siamese-RPN的贡献/优点:二、Siamese-RPN的缺点:代码流…

数据可视化 信息可视化_可视化数据操作数据可视化与纪录片的共同点

数据可视化 信息可视化Data visualization is a great way to celebrate our favorite pieces of art as well as reveal connections and ideas that were previously invisible. More importantly, it’s a fun way to connect things we love — visualizing data and kicki…

python 图表_使用Streamlit-Python将动画图表添加到仪表板

python 图表介绍 (Introduction) I have been thinking of trying out Streamlit for a while. So last weekend, I spent some time tinkering with it. If you have never heard of this tool before, it provides a very friendly way to create custom interactive Data we…

Python--day26--复习

转载于:https://www.cnblogs.com/xudj/p/9953293.html

SiameseRPN++分析

SiamRPN论文来源论文背景什么是目标跟踪什么是孪生网络结构Siamese的局限解决的问题论文分析创新点一:空间感知策略创新点二:ResNet-50深层网络创新点三:多层特征融合创新点四:深层互相关代码分析整体代码简述(1&#…

Lockdown Wheelie项目

“It’s Strava for wheelies,” my lockdown project, combining hyper-local exercise with data analytics to track and guide improvement. Practising wheelies is a great way to stay positive; after all, it’s looking up, moving forward.我的锁定项目“将Strava运…

api地理编码_通过地理编码API使您的数据更有意义

api地理编码Motivation动机 In my second semester of my Master’s degree, I was working on a dataset which had all the records of the road accident in Victoria, Australia (2013-19). I was very curious to know, which national highways are the most dangerous …

SiamBAN论文学习

SiameseBAN论文来源论文背景主要贡献论文分析网络框架创新点一:Box Adaptive Head创新点二:Ground-truth创新点三:Anchor Free论文流程训练部分:跟踪部分论文翻译Abstract1. Introduction2. Related Works2.1. Siamese Network Ba…

实现klib_使用klib加速数据清理和预处理

实现klibTL;DRThe klib package provides a number of very easily applicable functions with sensible default values that can be used on virtually any DataFrame to assess data quality, gain insight, perform cleaning operations and visualizations which results …

MMDetection修改代码无效

最近在打比赛,使用MMDetection框架,但是无论是Yolo修改类别还是更改head,代码运行后发现运行的是修改之前的代码。。。也就是说修改代码无效。。。 问题解决办法: MMDetection在首次运行后会把一部分运行核心放在anaconda的环境…

docker etcd

etcd是CoreOS团队于2013年6月发起的开源项目,它的目标是构建一个高可用的分布式键值(key-value)数据库,用于配置共享和服务发现 etcd内部采用raft协议作为一致性算法,etcd基于Go语言实现。 etcd作为服务发现系统,有以下的特点&…