线性代数(二) 矩阵及其运算

前言

行列式det(A) 其实表示的只是一个值 ∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b\\ c & d\end{vmatrix} = ad -bc acbd =adbc,其基本变化是基于这个值是不变。而矩阵表示的是一个数表。

定义

在这里插入图片描述
矩阵与线性变换的关系在这里插入图片描述在这里插入图片描述
即得
( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . . a m 1 a m 2 . . . a m n ) ( x 1 x 2 . . . x n ) = ( y 1 y 2 . . . y n ) \begin{pmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} & ...& a_{2n}\\ ... & ... & ...& ....\\ a_{m1} & a_{m2} & ...& a_{mn}\end{pmatrix} \begin{pmatrix} x_1\\x_2\\...\\x_n\end{pmatrix} = \begin{pmatrix} y_1\\y_2\\...\\y_n\end{pmatrix} a11a21...am1a12a22...am2............a1na2n....amn x1x2...xn = y1y2...yn
可以推矩阵乘法
在这里插入图片描述
即得中的 y 1 = c 11 = a 11 x 1 + a 12 x 2 + . . . + a 1 n x m y_1=c_{11}=a_{11}x_1+a_{12}x_2+...+a_{1n}x_m y1=c11=a11x1+a12x2+...+a1nxm

矩阵乘法的提前: 第一个矩阵的列数和第二个矩阵的行数相同

同理可得矩阵加法
在这里插入图片描述

特殊的矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

矩阵的初等变换

在这里插入图片描述
行和列的关系
( x 1 x 2 . . . x n ) ( a 11 a 21 . . . a m 1 a 12 a 22 . . . a m 2 . . . . . . . . . . . . . a 1 n a 2 n . . . a m n ) = ( y 1 y 2 . . y n ) \begin{pmatrix} x_1&x_2&...&x_n\end{pmatrix} \begin{pmatrix} a_{11} & a_{21} & ...& a_{m1}\\ a_{12} & a_{22} & ...& a_{m2}\\ ... & ... & ...& ....\\ a_{1n} & a_{2n} & ...& a_{mn}\end{pmatrix} = \begin{pmatrix} y_1&y_2&..&y_n\end{pmatrix} (x1x2...xn) a11a12...a1na21a22...a2n............am1am2....amn =(y1y2..yn)

在这里插入图片描述
在这里插入图片描述

初等变换与矩阵乘法的关系

在这里插入图片描述
在这里插入图片描述
E m ( i , j ) = ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 j 行 0 0 0 . . . 0 1 ) m 的 i 行与 j 行对调 ( 1 0 . . . 0 0 0 0 . . . 1 i 行 0 . . . . . . . . . . . . . . . . . 0 1 j 行 . . . 0 0 0 0 . . . 0 1 ) m E_m(i,j)=\begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1_{j行}& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m 的 i行与j行对调 \begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 0 & ...& 1_{i行}& 0\\ ... & ... & ...& ....& ....\\ 0 & 1_{j行} & ...& 0& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m Em(i,j)= 10...0001i...00...............00....1j000....01 mi行与j行对调 10...0000...1j0...............01i....0000....01 m
E m ( i ( k ) ) = ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 0 . . . 0 1 ) m 的 i 行乘于常数 k ( 1 0 . . . 0 0 0 k i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 0 . . . 0 1 ) m E_m(i(k))=\begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m 的 i行乘于常数k \begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & k_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m Em(i(k))= 10...0001i...00...............00....1000....01 mi行乘于常数k 10...000ki...00...............00....1000....01 m
E m ( i j ( k ) ) = ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 j 行 0 0 0 . . . 0 1 ) m i 行的 k 倍加到 j 上 ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 k j 行 . . . 1 j 行 0 0 0 . . . 0 1 ) m E_m(ij(k))=\begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1_{j行}& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m i行的k倍加到j上 \begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & k_{j行} & ...& 1_{j行}& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m Em(ij(k))= 10...0001i...00...............00....1j000....01 mi行的k倍加到j 10...0001i...kj0...............00....1j000....01 m
在这里插入图片描述
在这里插入图片描述

矩阵的运算

在这里插入图片描述

矩阵乘法运算规律

在这里插入图片描述

矩阵的转置

在这里插入图片描述
A n ∗ m ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . . a m 1 a m 2 . . . a m n ) 转置为 A n ∗ m T ( a 11 a 21 . . . a m 1 a 12 a 22 . . . a m 2 . . . . . . . . . . . . . a 1 n a 2 n . . . a m n ) A_{n*m} \begin{pmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} & ...& a_{2n}\\ ... & ... & ...& ....\\ a_{m1} & a_{m2} & ...& a_{mn}\end{pmatrix} 转置为 A_{n*m}^T \begin{pmatrix} a_{11} & a_{21} & ...& a_{m1}\\ a_{12} & a_{22} & ...& a_{m2}\\ ... & ... & ...& ....\\ a_{1n} & a_{2n} & ...& a_{mn}\end{pmatrix} Anm a11a21...am1a12a22...am2............a1na2n....amn 转置为AnmT a11a12...a1na21a22...a2n............am1am2....amn

例如:矩阵 B = ( 1 2 3 4 5 6 ) B = \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6\end{pmatrix} B=(142536)的转置矩阵就是 B T = ( 1 4 2 5 3 6 ) B^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6\end{pmatrix} BT= 123456

反对称矩阵

在这里插入图片描述

方阵的行列式

在这里插入图片描述

伴随矩阵

在这里插入图片描述
根据行列式和矩阵乘法的公式刚好得出 A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE

可逆矩阵(或称非奇异矩阵)

在这里插入图片描述
结合伴随矩阵的公式
在这里插入图片描述

  1. 根据 A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE
  2. 结合行列式公式 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B
  3. 得出 ∣ A ∣ ∣ A ∗ ∣ = ∣ A ∣ |A||A*|=|A| A∣∣A=A
  4. 得出 ∣ A ∗ ∣ = 1 |A^*|=1 A=1
  5. 所以 ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\cfrac{1}{|A|} A1=A1

在这里插入图片描述
在这里插入图片描述

共轭矩阵

  1. a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
  2. 共轭复数,两个实部相等,虚部互为相反数的复数,即 a-bi

举例:在这里插入图片描述
在这里插入图片描述

分块矩阵

在这里插入图片描述
在这里插入图片描述

上述指将矩阵按行或者列分块在这里插入图片描述

分块矩阵的其它性质

在这里插入图片描述

利用初等变化转为对角矩阵,方便计算

克拉默法则证明

在这里插入图片描述

  1. 把方程组写成矩阵方程 Ax = b, 这里 A = ( a i j ) n ∗ n A=(a_{ij})_{n*n} A=(aij)nn为 n 阶矩阵
  2. 因 |A| ≠ 0,故 A − 1 A^{-1} A1存在。令 x = A − 1 b ⇒ A x = A A − 1 b x=A^{-1}b \Rightarrow Ax=AA^{-1}b x=A1bAx=AA1b,表明 x = A − 1 b x=A^{-1}b x=A1b是方程组的解向量。
  3. 由于逆矩阵公式 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\cfrac{1}{|A|}A^* A1=A1A,有 x = 1 ∣ A ∣ A ∗ b x=\cfrac{1}{|A|}A^*b x=A1Ab
  4. 在这里插入图片描述
  5. x j = 1 ∣ A ∣ ( b 1 A 1 j + b 2 A 2 j + . . . + b n A n j ) x_j=\cfrac{1}{|A|}(b_1A_{1j} + b_2A_{2j}+...+b_nA_{nj}) xj=A1(b1A1j+b2A2j+...+bnAnj)
  6. x j = 1 ∣ A ∣ ∣ A j ∣ ( j = 1 , 2 , 3 , . . . n ) x_j=\cfrac{1}{|A|}|A_j| (j=1,2,3,...n) xj=A1Aj(j=1,2,3,...n)

分块矩阵乘法证明

在这里插入图片描述
我们通过验证分块矩阵乘法得到的元素与通用乘法得到元素是否一致,来证明分块乘法的可靠性,以 c 32 c_{32} c32为例:
c 32 = ( a 31 a 32 a 33 ) ( b 12 b 22 b 32 ) c_{32}= \begin{pmatrix} a_{31} & a_{32} &a_{33} \end{pmatrix}\begin{pmatrix} b_{12} \\b_{22} \\b_{32} \end{pmatrix} c32=(a31a32a33) b12b22b32
与他对应是 C 11 = A 11 B 11 + A 12 B 21 C_{11}=A_{11}B_{11}+A_{12}B_{21} C11=A11B11+A12B21中的 c 32 c_{32} c32
c 32 = ( a 31 a 32 ) ( b 12 b 22 ) + ( a 33 ) ( b 32 ) c_{32}= \begin{pmatrix} a_{31} & a_{32} \end{pmatrix}\begin{pmatrix} b_{12} \\b_{22} \end{pmatrix} + \begin{pmatrix} a_{33} \end{pmatrix} \begin{pmatrix} b_{32} \end{pmatrix} c32=(a31a32)(b12b22)+(a33)(b32)

主要参考

《矩阵的转置》
《克拉默法则》
《共轭矩阵》
《分块矩阵的初等变换(3)行列式不变吗?》
《矩阵分块乘法的原理是怎么样的?》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/33899.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

逆向破解学习-登山赛车

试玩 课程中的内容 Hook代码 import de.robv.android.xposed.XC_MethodHook; import de.robv.android.xposed.XposedHelpers; import de.robv.android.xposed.callbacks.XC_LoadPackage;public class HookComYoDo1SkiSafari2TXYYB_01 extends HookImpl{Overridepublic String p…

科技云报道:一波未平一波又起?AI大模型再出邪恶攻击工具

AI大模型的快速向前奔跑,让我们见识到了AI的无限可能,但也展示了AI在虚假信息、深度伪造和网络攻击方面的潜在威胁。 据安全分析平台Netenrich报道,近日,一款名为FraudGPT的AI工具近期在暗网上流通,并被犯罪分子用于编…

tensotflow中tf.title()和tf.broadcast()

tf.tile() 和 tf.broadcast_to() 都是 TensorFlow 中用于张量复制的函数,但它们的实现方式和使用场景略有不同。 tf.tile() 函数的定义如下: tf.tile(input, multiples, nameNone) 其中,input 表示要复制的张量,multiples 表示…

Vue输入框或者选择框无效,或者有延迟

问题剖析 使用Vue这种成熟好用的框架,一般出现奇奇怪怪的问题都是因为操作不当导致的,例如没有合理调用组件、组件位置不正确、没有合理定义组件或者变量、样式使用不当等等... 解决方案 如果你也出现了输入框输入东西,但是没有效果…

java8 求和

1.BigDecimal求和 对象字段求和 List<Car> listnew ArrayList<>(); BigDecimal sumOfBigDecimals list.stream().filter(Objects::nonNull).filter(c -> c.getMiles() ! null).map(Car::getMiles).reduce(BigDecimal.ZERO, BigDecimal::add);BigDecimal集合求…

(一)ES6 介绍

为什么学习ES6 ES6的版本变动内容最多&#xff0c;具有里程碑意义ES加入许多新的语法特性&#xff0c;编程实现更简单、搞笑ES6是前端发展趋势&#xff0c;就业必备技能 什么是ECMA ECMA&#xff08;European Computer Manufacturers Association&#xff09;&#xff0c;中…

如何使用异步IO编写高效的网络应用

如何使用异步IO编写高效的网络应用 在现代的网络应用中&#xff0c;处理大量的并发请求是必不可少的。传统的同步IO模式往往在面对高并发时效率低下。而异步IO则可以有效地提高网络应用的处理能力和性能。 异步IO是一种非阻塞的IO模型&#xff0c;它允许应用程序同时处理多个…

实时通信应用的开发:Vue.js、Spring Boot 和 WebSocket 整合实践

目录 1. 什么是webSocket 2. webSocket可以用来做什么? 3. webSocket协议 4. 服务器端 5. 客户端 6. 测试通讯 1. 什么是webSocket WebSocket是一种在单个TCP连接上进行全双工通信的协议。WebSocket使得客户端和服务器之间的数据交换变得更加简单&#xff0c;允许服务…

百度网盘非会员倍速播放(电脑端)

百度网盘非会员倍速播放&#xff08;电脑端&#xff09; 1. 打开edge浏览器&#xff0c;点击右上角的三个点后&#xff0c;选择“扩展” 2. 选择“管理扩展” 3. 选择“获取MicrosoftEdge扩展” 4. 搜索“Global Speed” 5. 选择Global Speed:视频速度控制&#xff0c;然…

PHP 求解两字符串所有公共子序列及最长公共子序列 支持多字节字符串

/*** 获取两字符串所有公共子序列【不连续的】 例&#xff1a;abc ac > ac** param string $str1 字符串1* param string $str2 字符串2** return array*/ function public_sequence(string $str1, string $str2): array {$data [[-1, -1, , 0, ]]; // 子序列容器【横坐标 …

配置Arduino+ESP32走过的巨坑

项目场景&#xff1a; 前几天去淘宝买了块ESP32拿来用&#xff0c;配置Arduino最新版ESP32 2.0.11走过的巨坑。 问题描述 先安装好了ArduinoIDE最新版&#xff08;教程里介绍去官网下&#xff09;&#xff0c;然后配置ESP32开发板&#xff0c;后面发现安装速度惊人。 去找加速…

Pytorch深度学习-----完整神经网络模型训练套路

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用&#xff08;ToTensor&#xff0c;Normalize&#xff0c;Resize &#xff0c;Co…

git 使用步骤

1、创建分支 git checkout -b cate 2、本地提交 将 cate 分支进行本地提交 git add . git commit -m "完成cate页面的开发" 3、远程推送 将本地的 cate 分支推送到码云 git push -u origin cate 4、合并本地分支 将本地 cate 分支中的代码合并到 master 主分支&am…

websocket知识点

http协议 http协议特点&#xff1a; 无状态协议每个请求是独立的单双工通信&#xff0c;且服务器无法主动给客户端发信息http协议受浏览器同源策略影响 http实现双向通信方法: 轮询长轮询iframe流sse EventSource websocket协议 websocket协议: 全双工协议支持跨域支持多…

自动测试框架airtest应用一:将XX读书书籍保存为PDF

一、Airtest的简介 Airtest是网易出品的一款基于图像识别和poco控件识别的一款UI自动化测试工具。Airtest的框架是网易团队自己开发的一个图像识别框架&#xff0c;这个框架的祖宗就是一种新颖的图形脚本语言Sikuli。Sikuli这个框架的原理是这样的&#xff0c;计算机用户不需要…

asp.net core webapi如何执行周期性任务

使用Api执行周期性任务 第一种&#xff0c;无图形化界面1.新建类&#xff0c;继承IJob&#xff0c;在实现的方法种书写需要周期性执行的事件。2.编写方法类&#xff0c;定义事件执行方式3.在启动方法中&#xff0c;进行设置&#xff0c;.net 6中在program.cs的Main方法中&#…

数据库--MySQL增删改查

数据库相关链接&#xff1a; 数据库--数据类型&#xff1a;http://t.csdn.cn/RtqMD 数据库--三大范式、多表查询、函数sql&#xff1a;http://t.csdn.cn/udJSG 基础的数据操作 在创建了数据库和数据库表之后&#xff0c;我们就可以在表中进行数据操作了。基础操作分为 添加 …

旅卦-火山旅

前言&#xff1a;人生就像一趟旅行&#xff0c;为谋生奔波也是旅&#xff0c;旅是人生的常态&#xff0c;我们看一下易经里的旅卦&#xff0c;分析下卦辞和爻辞以及自己的理解。 目录 卦辞 爻辞 总结 卦辞 旅&#xff1a;小亨&#xff0c;旅贞吉。 卦序&#xff1a;穷大者…

java获取到heapdump文件后,如何快速分析?

简介 在之前的OOM问题复盘之后&#xff0c;本周&#xff0c;又一Java服务出现了内存问题&#xff0c;这次问题不严重&#xff0c;只会触发堆内存占用高报警&#xff0c;没有触发OOM&#xff0c;但好在之前的复盘中总结了dump脚本&#xff0c;会在堆占用高时自动执行jstack与jm…

560. 和为 K 的子数组

思路 本题的主要思路为创建一个哈希表记录每个0~i的和&#xff0c;在遍历这个数组的时候查询有没有sum-k的值在哈希表中&#xff0c;如果有&#xff0c;说明有个位置到当前位置的和为k。   有可能不止一个&#xff0c;哈希表负责记录有几个sum-k&#xff0c;将和记录下来。这…