竞赛项目 车位识别车道线检测 - python opencv

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 车位识别车道线检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

简介

你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里,那是不是很爽?事实证明,基于深度学习和OpenCV解决这个问题相对容易,只需获取停车场的实时视频即可。

该项目可推荐用于竞赛项目

检测效果

废话不多说, 先上效果图
在这里插入图片描述
在这里插入图片描述
注意车辆移动后空车位被标记上
在这里插入图片描述
在这里插入图片描述

车辆移动到其他车位

在这里插入图片描述

实现方式

整体思路

这个流程的第一步就是检测一帧视频中所有可能的停车位。显然,在我们能够检测哪个是没有被占用的停车位之前,我们需要知道图像中的哪些部分是停车位。

第二步就是检测每帧视频中的所有车辆。这样我们可以逐帧跟踪每辆车的运动。

第三步就是确定哪些车位目前是被占用的,哪些没有。这需要结合前两步的结果。

最后一步就是出现新车位时通知我。这需要基于视频中两帧之间车辆位置的变化。

这里的每一步,我们都可以使用多种技术用很多种方式实现。构建这个流程并没有唯一正确或者错误的方式,但不同的方法会有优劣之分。

使用要使用到两个视觉识别技术 :识别空车位停车线,识别车辆
检测空车位

车位探测系统的第一步是识别停车位。有一些技巧可以做到这一点。例如,通过在一个地点定位停车线来识别停车位。这可以使用OpenCV提供的边缘检测器来完成。但是如果没有停车线呢?

我们可以使用的另一种方法是假设长时间不移动的汽车停在停车位上。换句话说,有效的停车位就是那些停着不动的车的地方。但是,这似乎也不可靠。它可能会导致假阳性和真阴性。

那么,当自动化系统看起来不可靠时,我们应该怎么做呢?我们可以手动操作。与基于空间的方法需要对每个不同的停车位进行标签和训练不同,我们只需标记一次停车场边界和周围道路区域即可为新的停车位配置我们的系统。

在这里,我们将从停车位的视频流中截取一帧,并标记停车区域。Python库matplotlib
提供了称为PolygonSelector的功能。它提供了选择多边形区域的功能。

我制作了一个简单的python脚本来标记输入视频的初始帧之一上的多边形区域。它以视频路径作为参数,并将选定多边形区域的坐标保存在pickle文件中作为输出。

在这里插入图片描述

import os
import numpy as np
import cv2
import pickle
import argparse
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.widgets import PolygonSelector
from matplotlib.collections import PatchCollection
from shapely.geometry import box
from shapely.geometry import Polygon as shapely_polypoints = []
prev_points = []
patches = []
total_points = []
breaker = Falseclass SelectFromCollection(object):def __init__(self, ax):self.canvas = ax.figure.canvasself.poly = PolygonSelector(ax, self.onselect)self.ind = []def onselect(self, verts):global pointspoints = vertsself.canvas.draw_idle()def disconnect(self):self.poly.disconnect_events()self.canvas.draw_idle()def break_loop(event):global breakerglobal globSelectglobal savePathif event.key == 'b':globSelect.disconnect()if os.path.exists(savePath):os.remove(savePath)print("data saved in "+ savePath + " file") with open(savePath, 'wb') as f:pickle.dump(total_points, f, protocol=pickle.HIGHEST_PROTOCOL)exit()def onkeypress(event):global points, prev_points, total_pointsif event.key == 'n': pts = np.array(points, dtype=np.int32) if points != prev_points and len(set(points)) == 4:print("Points : "+str(pts))patches.append(Polygon(pts))total_points.append(pts)prev_points = pointsif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('video_path', help="Path of video file")parser.add_argument('--out_file', help="Name of the output file", default="regions.p")args = parser.parse_args()global globSelectglobal savePathsavePath = args.out_file if args.out_file.endswith(".p") else args.out_file+".p"print("\n> Select a region in the figure by enclosing them within a quadrilateral.")print("> Press the 'f' key to go full screen.")print("> Press the 'esc' key to discard current quadrilateral.")print("> Try holding the 'shift' key to move all of the vertices.")print("> Try holding the 'ctrl' key to move a single vertex.")print("> After marking a quadrilateral press 'n' to save current quadrilateral and then press 'q' to start marking a new quadrilateral")print("> When you are done press 'b' to Exit the program\n")video_capture = cv2.VideoCapture(args.video_path)cnt=0rgb_image = Nonewhile video_capture.isOpened():success, frame = video_capture.read()if not success:breakif cnt == 5:rgb_image = frame[:, :, ::-1]cnt += 1video_capture.release()while True:fig, ax = plt.subplots()image = rgb_imageax.imshow(image)p = PatchCollection(patches, alpha=0.7)p.set_array(10*np.ones(len(patches)))ax.add_collection(p)globSelect = SelectFromCollection(ax)bbox = plt.connect('key_press_event', onkeypress)break_event = plt.connect('key_press_event', break_loop)plt.show()globSelect.disconnect()

(PS: 若代码出现bug可反馈博主, 及时修改)

车辆识别

要检测视频中的汽车,我使用Mask-
RCNN。它是一个卷积神经网络,对来自几个数据集(包括COCO数据集)的数百万个图像和视频进行了训练,以检测各种对象及其边界。 Mask-
RCNN建立在Faster-RCNN对象检测模型的基础上。

除了每个检测到的对象的类标签和边界框坐标外,Mask RCNN还将返回图像中每个检测到的对象的像pixel-wise mask。这种pixel-wise
masking称为“ 实例分割”。我们在计算机视觉领域所看到的一些最新进展,包括自动驾驶汽车、机器人等,都是由实例分割技术推动的。

M-RCNN将用于视频的每一帧,它将返回一个字典,其中包含边界框坐标、检测对象的masks、每个预测的置信度和检测对象的class_id。现在使用class_ids过滤掉汽车,卡车和公共汽车的边界框。然后,我们将在下一步中使用这些框来计算IoU。

由于Mask-RCNN比较复杂,这里篇幅有限,需要mask-RCNN的同学联系博主获取, 下面仅展示效果:

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/33731.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kubernetes(K8s)从入门到精通系列之十三:软件负载平衡选项

Kubernetes K8s从入门到精通系列之十三:软件负载平衡选项 一、软件负载平衡选项二、keepalived and haproxy三、keepalived配置四、haproxy配置五、选项 1:在操作系统上运行服务六、选项 2:将服务作为静态 Pod 运行 一、软件负载平衡选项 当…

Transformers从零到精通教程——Model

文章目录 1.在线加载2.模型下载3.离线加载4.模型加载参数5.模型调用5.1不带Model Head的模型调用5.2带Model Head的模型调用 from transformers import AutoConfig, AutoModel, AutoTokenizer1.在线加载 model AutoModel.from_pretrained("hfl/rbt3", force_downlo…

使用SpringAMQP的基本步骤

概述 SpringAMQP是一个基于Spring框架的开源项目,用于支持使用AMQP(Advanced Message Queuing Protocol)进行消息传递。它提供了对AMQP通信的简化抽象和集成,使得在Spring应用程序中使用AMQP变得更加简单和方便。 SpringAMQP的主…

实现跨域的几种方式

原理 前后端的分离导致了跨域的产生 跨域的三要素:协议 域名 端口 三者有一个不同即产生跨域 例如: http://www.csdn.com https://www.csdn.com 由于协议不同,端口不同而产生跨域 注:http的默认端口80,https的默…

Android应用开发(37)LTPO帧率测试基于Surfaceview(暂存)

Android应用开发学习笔记——目录索引 参考android官网: Frame rate | Android media | Android Developers多重刷新率 | Android 开源项目 | Android Open Source ProjectWindowManager.LayoutParams | Android Developers 目前市面上旗舰手机基本都是…

Python生成指定大小文件:txt/图片/视频/csv

如题,做测试的懂的都懂,不多解释 相比其他大佬,本脚本基于gpt编写后整理,生成的文件更真实,能够打开预览,看过其他人的生成脚本,只是一个符合大小,但是是空白或不能打开的文件。 话…

ad+硬件每日学习十个知识点(26)23.8.6 (DCDC的降压电路、升压电路、降压-升压电路,同步整流,选型考虑同步、隔离)

文章目录 1.DCDC的降压原理2.DCDC的升压原理3.DCDC的升压和降压原理4.什么是肖特基二极管造成的死区电压?5.MOS管有死区电压么?6.DCDC的同步整流(用MOS管取代整流二极管,避免死区电压的影响)7.DCDC选型——同步与非同步…

近地面无人机植被定量遥感与生理参数反演技术

遥感(RS-Remote Sensing)——不接触物体本身,用传感器收集目标物的电磁波信息,经处理、分析后,识别目标物,揭示其几何、物理性质和相互关系及其变化规律的现代科学技术。 换言之,即是“遥远的感…

一文读懂什么是Byzer

目录 一、什么是Byzer? 二、Byzer特性 2.1 语法特性 2.2 数据的管理特性 2.3 支持自定义函数拓展Byzer语法 三、Byzer有哪些功能? 3.1 Byzer-Lang语言特性 3.1.1强大的数据处理能力 3.1.2内置机器学习算法 3.2 Byzer-Lang支持权限控制 3.3 Byzer-LLM拓展…

Spring测试题及答案

1:下面关于“依赖注入”的说法,错误的是(D) A. 将组件间的依赖关系采取配置文件的方式管理,而不是硬编码在代码中 B. 降低了组件间的耦合,使程序更容易维护和升级 C. 促进了“面向接口编程”&#xff0c…

【工程优化问题】基于鲸鱼、萤火虫、灰狼优化算法的张力、压缩弹簧设计问题研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

JQuery判断radio(单选框)是否选中和获取选中值方法总结

使用checked属性判断选中、jquery获取radio单选按钮的值、获取一组radio被选中项的值、设置单选按钮被选中等&#xff0c;详细如下&#xff1a; 一、利用获取选中值判断选中 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.…

el-tree-select那些事

下拉菜单树形选择器 用于记录工作及日常学习涉及到的一些需求和问题 vue3 el-tree-select那些事 1、获取el-tree-select选中的任意层级的节点对象 1、获取el-tree-select选中的任意层级的节点对象 1-1数据集 1-2画面 1-3代码 1-3-1画面代码 <el-tree-selectv-model"s…

(6)所有角色数据分析-6

http://t.csdn.cn/KrurEhttp://t.csdn.cn/KrurE &#xff08;5&#xff09;中的页面&#xff0c;倾向于向用户展示所有数据&#xff0c;但却没有对数据进行比较、分析&#xff0c;用户不能直观的感受到各种数据之间的关系与变化幅度&#xff0c;所以&#xff0c;下面将向用户提…

SQLAlchemy------更多查询

1 查询&#xff1a; filer:写条件 filter_by&#xff1a;等于的值 res session.query(User).all() # 是个普通列表 print(type(res)) print(len(res)) all()的结果就是列表&#xff0c;列表里面是对象 2 只查询某几个字段 # select name as xx,email from user; res…

centos7编译安装升级python3.11

编译安装python3.11 准备步骤解压编译替换升级 准备步骤 yum -y install gcc zlib zlib-devel libffi libffi-devel bzip2-devel yum -y install openssl-devel openssl11 openssl11-devel yum -y install readline-devel解压编译 wget https://www.python.org/ftp/python/3.…

Node.js |(三)Node.js API:path模块及Node.js 模块化 | 尚硅谷2023版Node.js零基础视频教程

学习视频&#xff1a;尚硅谷2023版Node.js零基础视频教程&#xff0c;nodejs新手到高手 文章目录 &#x1f4da;path模块&#x1f4da;Node.js模块化&#x1f407;介绍&#x1f407;模块暴露数据⭐️模块初体验⭐️暴露数据 &#x1f407;导入文件模块&#x1f407;导入文件夹的…

adb 命令行执行单元测试

文章目录 1、配置 adb 环境变量2、adb 执行测试3、官方文档解读 adb 使用&#xff08;1&#xff09;第一条执行测试的adb命令&#xff08;2&#xff09;am instrument 参数&#xff08;3&#xff09;-e 参数 的 key-value键值对&#xff08;4&#xff09;用法用例 4、存在问题 …

Python3 安装、环境变量配置、PyCharm新建Python项目

一、安装包下载 Pyhton官网下载>>最新稳定版的安装包&#xff1a; 找到合适的版本进行下载&#xff1a; 如果下载较慢&#xff0c;此处提供一个3.10.11的稳定版本的安装包&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/16GnWjkGFuSfWfaI9UVX8qA?pwd4u5o 提取…

崔颢的黄鹤楼

我们上学的时候学的是&#xff1a; 昔人已乘黄鹤去&#xff0c;此地空余黄鹤楼。 黄鹤一去不复返&#xff0c;白云千载空悠悠。 晴川历历汉阳树&#xff0c;芳草萋萋鹦鹉洲。 日暮乡关何处是&#xff1f;烟波江上使人愁。 然而敦煌诗卷版本是这样的 昔人已乘白云去&#xff0c…