【0】README
0.1)本文总结于 数据结构与算法分析, 源代码均为原创, 旨在实现 对不相交集合的路径压缩操作;
0.2)对求并后的集合进行路径压缩,目的是降低集合(合并树)的深度,减少find 操作的时间复杂度;
0.3) for introduction to non-intersect set ADT ,please refet to http://blog.csdn.net/PacosonSWJTU/article/details/49716905 , and for details of finding or unionSet operations towards non-intersect set , please refer to http://blog.csdn.net/pacosonswjtu/article/details/49717009
【1】 路径压缩相关
1.1)基于这样的观察:执行 Union操作 的任何算法都将产生相同的最坏情形的树,因为它必然会随意打破树间的平衡。因此,无需对整个数据结构重新加工而使算法加速的唯一方法是: 对Find 操作做些更聪明的工作;
1.2)路径压缩定义:设操作是Find(X), 此时路径压缩的效果是, 从X到根的路径上的每一个节点都使它的父节点变成根;执行find(15)后压缩路径的效果为:
对路径压缩算法的分析(Analysis)
- A1)路径压缩的实施在于 使用额外的两次指针移动, 节点13和14 现在离根近了一个位置, 而节点15和16离根近了两个位置;
- A2)因此, 对这些节点未来的快速访问将由于花费 额外的工作来进行路径压缩而得到补偿;
1.3)路径压缩对 基本的 Find操作改变不大。对 Find 操作来说,唯一的变化是 使得 S[X] 等于 由Find 返回的值;这样,在集合的根被递归地找到以后, X 就直接指向了它, 对通向根的路径上的每一个节点这将递归地出现,因此实现了路径压缩;
1.4)路径压缩可以和 大小求并完全兼容,这就使得两个例程可以同时实现;
1.5)路径压缩不完全与 按高度求并兼容,因为路径压缩可以改变树的高度;
【2】source code + printing results
2.1)download source code:
https://github.com/pacosonTang/dataStructure-algorithmAnalysis/blob/master/chapter8/p206_pathCompression.c
- souce code statements:路径压缩源代码中使用的集合求并方法是: 按大小求并:
2.2)source code at a glance:
#include <stdio.h>
#include <malloc.h>#define ElementType int
#define Error(str) printf("\n error: %s \n",str) struct UnionSet;
typedef struct UnionSet* UnionSet;// we adopt the child-sibling expr
struct UnionSet
{int parent;int size;ElementType value;
};UnionSet makeEmpty();
UnionSet* initUnionSet(int size, ElementType* data);
void printSet(UnionSet* set, int size);
void printArray(ElementType data[], int size);
int find(int index, UnionSet* set);
void pathCompress(int, UnionSet*);// initialize the union set
UnionSet* initUnionSet(int size, ElementType* data)
{UnionSet* set; int i;set = (UnionSet*)malloc(size * sizeof(UnionSet));if(!set){Error("out of space, from func initUnionSet"); return NULL;} for(i=0; i<size; i++){set[i] = makeEmpty();if(!set[i])return NULL;set[i]->value = data[i];}return set;
}// allocate the memory for the single UnionSet and evaluate the parent and size -1
UnionSet makeEmpty()
{UnionSet temp;temp = (UnionSet)malloc(sizeof(struct UnionSet));if(!temp){Error("out of space, from func makeEmpty!"); return NULL;}temp->parent = -1;temp->size = 1;return temp;
}// merge set1 and set2 by size
void setUnion(UnionSet* set, int index1, int index2)
{//judge whether the index1 or index2 equals to -1 ,also -1 represents the rootif(index1 != -1)index1 = find(index1, set);if(index2 != -1)index2 = find(index2, set);if(set[index1]->size > set[index2]->size){set[index2]->parent = index1;set[index1]->size += set[index2]->size;}else{set[index1]->parent = index2;set[index2]->size += set[index1]->size;}
} //find the root of one set whose value equals to given value
int find(int index, UnionSet* set)
{UnionSet temp; while(1){temp = set[index];if(temp->parent == -1)break;index = temp->parent;}return index;
} // conducting path compression towards union set with given index
void pathCompress(int index, UnionSet* set)
{ int root;int i;int parent;//1st step: find the top root contains the element under index root = find(index, set);//2nd step: path compression beginsi = set[index]->parent;set[index]->parent = root;while(i != -1) { parent = set[i]->parent; if(parent == root)break;set[i]->parent = root;i = parent;}
}int main()
{int size;UnionSet* unionSet;ElementType data[] = {110, 245, 895, 658, 321, 852, 147, 458, 469, 159, 347, 28};size = 12;printf("\n\t====== test for conducting path compression towards union set by size ======\n");//printf("\n\t=== the initial array is as follows ===\n");//printArray(data, depth); printf("\n\t=== the init union set are as follows ===\n");unionSet = initUnionSet(size, data); // initialize the union set over//printSet(unionSet, size);printf("\n\t=== after union(0, 1) + union(2, 3) + union(4, 5) + union(6, 7) + union(8, 9) + union(10 ,11) ===\n");setUnion(unionSet, 0, 1);setUnion(unionSet, 2, 3);setUnion(unionSet, 4, 5);setUnion(unionSet, 6, 7);setUnion(unionSet, 8, 9); setUnion(unionSet, 10, 11); //printSet(unionSet, size);printf("\n\t=== after union(1, 3) + union(5, 7) + union(9, 11) ===\n");setUnion(unionSet, 1, 3);setUnion(unionSet, 5, 7);setUnion(unionSet, 9, 11);//printSet(unionSet, size); printf("\n\t=== after union(3, 7) + union(7, 11) ===\n");setUnion(unionSet, 3, 7);setUnion(unionSet, 7, 11); printSet(unionSet, size); printf("\n\t=== after pathCompress(0, unionSet) + pathCompress(8, unionSet) ===\n");pathCompress(0, unionSet) ;pathCompress(8, unionSet);printSet(unionSet, size); return 0;
}void printArray(ElementType data[], int size)
{int i;for(i = 0; i < size; i++) printf("\n\t data[%d] = %d", i, data[i]); printf("\n\n");
} void printSet(UnionSet* set, int size)
{int i;UnionSet temp;for(i = 0; i < size; i++){ temp = set[i];printf("\n\t parent[%d] = %d", i, temp->parent); }printf("\n");
}
2.3)printing results: