学习有向图和无向图的强连通分量(基本概念+割点+点双联通分量+桥+边双连通分量+全套模板【Tarjan】)

最近总是考到Tarjan,让我措手不及

  • 基本概念
  • 割点以及点双连通分量
  • Tarjan法求割点
    • 推导过程
    • 代码实现
  • Tarjan法求点双连通分量
    • 推导过程
    • 代码实现
  • 有向图的Tarjan缩点
  • 桥与边双连通分量
  • Tarjan法求桥
    • 理论推导
    • 代码实现
  • Tarjan法求边双连通分量
    • 理论推导
    • 代码实现

前言:有向图和无向图其实并没有太多的差别,这里就没有必要把一些东西做无意义的重复
我就只写了无向图的,遇到了有区别在下面的阐释中会有提示

基本概念

无向图:边没有方向(或者称为双向)的图
连通图:如果一个图至少有两个点,那么图任意两个点可以互相到达
子图:如果图G’的点集是图G的点集的子集,且图G’的边集是图G的边集的子集,称G’是G的子图
连通子图:如果G的子图G’是连通图,那么G’就是G的一个连通子图
极大连通子图:如果图G’是G的连通子图,并且不存在图G的另一个连通子图G’‘使得G’是G’‘的子图,称G’为G的极大连通子图,又叫连通分量
极小连通子图:如果图G’是G的连通子图,并且不存在图G的另一个连通子图G’‘使得G’不是G’'的子图,称G’为G的极小连通子图

如果无向图G是连通图,那么G只有一个极大连通子图(连通分量)即它本身,
同时G一定有极小连通子图即它的最小生成树并可能有多个

如果无向图G不是连通图,那么G有多个极大连通子图(连通分量),
同时G没有极小连通子图。

极大和极小是指集合上的(会不会被其他集合包含)而不是单纯指点或边的数量
好好理解吧实在看不懂其实也无所谓,这种死概念在这里插入图片描述


割点以及点双连通分量

割点:如果去掉无向连通图G中一点x,并去掉所有与x相邻的边,余下的点和边构成的子图G’不再是连通图,那么称x是G的一个割点
点双连通图:如果一个连通图不存在割点,那么可以称之为点双连通图
点双连通分量:如果一个连通分量不存在割点,那么可以称之为点双连通分量
在这里插入图片描述
如图中,c和d就是割点,如果去掉c以及c所对应的所有边,意味着G无法与其他的点联通

A,B,C,D构成了一个点双连通分量;D,E,F也是一个;任意去掉一个点,剩下的点还是连通
C,G并没有构成一个点双连通分量,因为一旦去掉C或者G,就只剩下一个点了,显然并不符合连通图的定义


Tarjan法求割点

推导过程

我们选择图中任意一点u为起点进行dfs,形成一颗搜索树,显然u是搜索树的根
如果x是图的割点,我们考虑x要满足哪些条件:
1.如果x是u,那么x至少有两个子节点
2.如果x不是u,那么x有子节点,
x存在子节点无法在不经过x的情况下到达以x为根的子树外
也就是说至少存在一个点如果要找到一个不属于x的子树的点,必须经过x
那么x就是一个割点,一旦被删掉,那个点无法走到外面的点


解决方案如下:
情况1:我们很容易判断
情况2:我们可以借助tarjan算法中的dfn和low信息来判断
dfn:表示i点在搜索树上的搜索序
low:表示i通过各种边能达到的整棵树深度最小的点

首先我们知道,如果x的某个子节点y能在不经过x的前提下到达以x为根的子树外的点z,那么z的dfn一定小于x
如果low[y]小于dfn[x],就能说明点y能不通过x到达以x为根的子树外
如果存在任意一个y不满足,就说明x是割点
在这里插入图片描述


代码实现

fa是搜索树上u的父节点,cnt是当前的时间戳,child是搜索树上u的子节点数量,
vec是记录了u邻边的vector,isCut[i]表示i是否是割点。
注意当v是已访问过的点时,是取v的dfn更新u的low

void tarjan ( int u, int fa ) {low[u] = dfn[u] = ++ cnt;int child = 0;for ( int i = 0;i < G[u].size();i ++ ) {int v = G[u][i];if ( ! dfn[v] ) {child ++;tarjan ( v, u );if ( low[v] >= dfn[u] )//v能走到的深度最小的点都比u大//说明v无法不经过u到达除开u子树外的点isCut[u] = 1;low[u] = min ( low[v], low[u] );//更新能到达的最小的深度的点}else if ( dfn[u] > dfn[v] && v != fa )///v一定不能是u的父亲//v的深度如果比u小,意味着v先被遍历,v就变成了u祖先级别//属于除开u所在子树外的点,证明u可以不经过自己的父亲直接到达vlow[u] = min ( dfn[v], low[u] );}if ( fa < 0 && child == 1 )//这棵树根只有一个儿子 是会被误判成割点的isCut[u] = 0;
} 

Tarjan法求点双连通分量

推导过程

根据点双连通分量的定义,我们可以很简单的想到以下方法来求点双连通分量:
1.我们将点按照访问顺序入栈
2.当我们确定x是割点,即x的某个子节点y满足low[y]≥dfn[x]时,
我们将栈中的点依次弹出,直到栈顶为x,
x和我们弹出的这些点构成了一个点双连通分量
注意:x不能弹出,因为x可能属于多个点双连通分量
3.如果x是根,即使不是割点也作如上处理

代码实现

st是按访问顺序储存点的栈,cntd是点双连通分量的数量,vecd[i]是储存第i个点双连通分量里点的vector

void tarjan ( int u, int fa ) {low[u] = dfn[u] = ++ cnt;int child = 0;st.push ( u ); for ( int i = 0;i < G[u].size();i ++ ) {int v = G[u][i];if ( ! dfn[v] ) {child ++;tarjan ( v, u );if ( low[v] >= dfn[u] ) {isCut[u] = 1;cntd ++;vecd[cntd].push_back ( u );while ( st.top() != u ) {vecd[cntd].push_back ( st.top() );st.pop();}}low[u] = min ( low[v], low[u] );}else if ( dfn[u] > dfn[v] && v != fa )low[u] = min ( dfn[v], low[u] );}if ( fa < 0 && child == 1 ) isCut[u] = 0;if ( fa < 0 && child == 0 ) {//这棵树只有根节点cntd ++;vecd[cntd].push_back ( u );}
} 

在这里插入图片描述

有向图的Tarjan缩点

我一般都是这么写的,还挺不错的

void tarjan ( int u ) {dfn[u] = low[u] = ++ cnt;sta.push ( u );for ( int i = 0;i < G[u].size();i ++ ) {int v = G[u][i];if ( ! dfn[v] ) {tarjan ( v );low[u] = min ( low[u], low[v] );}else if ( ! sccno[v] )low[u] = min ( low[u], dfn[v] );}if ( low[u] == dfn[u] ) {int v;scc ++;do {v = sta.top();sta.pop();sccno[v] = scc;//顺便标记了v属于哪一个强连通分量vecd[scc].push_back( v );}while ( v != u );}
}

桥与边双连通分量

割边:如果去掉无向连通图G中一条边w,余下的点和边构成的子图G’不再是连通图,那么称w是G的一条割边,也成为桥
边双连通图:如果一个连通图不存在桥,那么可以称之为边双连通图
边双连通分量:如果一个连通分量不存在桥,那么可以称之为边双连通分量
在这里插入图片描述
如图中的CG边就是桥,删掉后G就被孤立了
A,B,C,D,E,F就是一个边双连通分量,任意删掉一条边各个点还是能互相到达
在这里插入图片描述

Tarjan法求桥

理论推导

我们选择图中任意一点为起点进行dfs,形成一颗搜索
如果w是图的割边,我们考虑w要满足什么条件:
1.w肯定在搜索树上
2.如果w连接的是x和y,并且在搜索树上x是y的父节点,
那么y无法在不经过w的前提下到达以y为根的子树外
显然,重边是影响桥的判定的。但是重边不影响割点的判定


代码实现

vec是记录了u邻边的vector,to是边的终点,no是边的编号
fano是搜索树上连接u和u父节点的边的编号
isCut[i]表示i是否是桥,注意判断桥的条件和割点有所不同

void tarjan ( int u, int fano ) {low[u] = dfn[u] = ++ cnt;int child = 0;for ( int i = 0;i < vec[u].size();i ++ ) {int v = vec[u][i].to, vno = vec[u][i].no;if ( ! dfn[v] ) {child ++;tarjan ( v, vno );if ( low[v] > dfn[u] )isCut[no] = 1;low[u] = min ( low[v], low[u] );}else if ( dfn[u] > dfn[v] && vno != fano )low[u] = min ( dfn[v], low[u] );}
} 

在这里插入图片描述

Upd:重边求桥以及连通块

void dfs1( int u, int lst = -1 ) {
//因为有重边的关系 所以不能用vector 判断是否是父亲的版本
//只能防止反向走同一边的dfn[u] = low[u] = ++ cnt; sta.push( u );for( int i = head[u];~ i;i = E[i].nxt ) {if( i == lst ) continue;int v = E[i].to;if( ! dfn[v] ) {dfs1( v, i ^ 1 );low[u] = min( low[u], low[v] );if( low[v] > dfn[u] ) {tot ++; int now;do {now = sta.top();scc[now] = tot;sta.pop();} while( now ^ v );}}else low[u] = min( low[u], dfn[v] );}
}

Tarjan法求边双连通分量

理论推导

显然,割点是存在于点双连通分量中的并且可能存在于多个点双连通分量中,
因为割点在整张图G里面是割点,但在子图G’里它就可能不再是割点,
上面给的图就是一个栗子。。。。但是桥是不可能存在于边双连通分量中的

所以只需要我们把桥从图中去掉,这样图就变成了多个连通分量,
每个连通分量就是原图的边双连通分量。
然而在实际操作中我们不需要真的去掉桥,过于麻烦,可以考虑只需要将他们标记并且在第二次dfs中不经过他们就行了

代码实现

visit[i]记录了点i是否被访问过
visitno[i]记录了编号为i的边是否被访问过
vecb[i]是记录第i个边双连通分量里边的vector

//此处省略第一次dfs求桥的代码
void dfs ( int u ) {visit[u] = 1;for ( int i = 0;i < vec[u].size();i ++ ) {int v = vec[u][i].to, vno = vec[u][i].no;if ( isCut[vno] == 0 ) {if ( visitno[vno] == 0 ) {visitno[vno] = 1;vecb[cntb].push_back ( vno );}if ( visit[v] == 0 )dfs ( v );}}
}
int main() {for ( int i = 1;i <= n;i ++ )if ( ! visit[i] ) {cntb ++;dfs ( i );}
}

在这里插入图片描述
这一篇博客主要是理论性的东西,个人觉得价值还是蛮高的,毕竟是一个新东西

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/318188.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.NET Core下的Spring Cloud——前言和概述

前言前几年一直在写类似dubbo&#xff0c;Spring Cloud的微服务框架辗辗转转重复了多次&#xff0c;也重构推翻了很多次&#xff0c;其中诞生了“Rabbit.Rpc”,”Go”,”RabbitCloud”等开源项目。其中不乏他人对这些项目的完善。很高兴自己的开源项目能够给他人提供思路和复用…

期望 概率DP

期望 \(x\) 的期望 \(E(x)\) 表示平均情况下 \(x\) 的值。 令 \(C\) 表示常数&#xff0c; \(X\) 和 \(Y\) 表示两个随机变量。 \(E(C)C\) \(E(C \times X)C \times E(X)\) \(E(XY)E(X)E(Y)\) 期望的线性性 \(E(XY)\) 不一定等于 \(E(X) \times E(Y)\) 期望练习&#xff1a…

CF785E Anton and Permutation

CF785E Anton and Permutation 题意&#xff1a; 对于一个长度为 n 的序列进行 k 次操作&#xff0c;每次操作都是交换序列中的某两个数。对于每一个操作&#xff0c;回答当前序列中有多少个逆序对。 1<n<200000 1<q<50000 题解&#xff1a; 动态逆序对&#x…

P5311-[Ynoi2011]成都七中【点分树,树状数组】

正题 题目链接:https://www.luogu.com.cn/problem/P5311 题目大意 给出nnn个点的一棵树&#xff0c;每个节点有一个颜色&#xff0c;mmm次询问提出区间[l,r][l,r][l,r]的点构成的生成子图中xxx所在连通块的颜色数。 1≤n,m,ai≤1051\leq n,m,a_i\leq 10^51≤n,m,ai​≤105 解…

[ NOIP提高组 2016]愤怒的小鸟(暴搜 + 状压DP)// [SNOI2017]一个简单的询问(莫队)

一次性写两道题T1&#xff1a;一个简单的询问题目题解代码实现T2&#xff1a;愤怒的小鸟题目暴搜题解暴搜代码实现状压DP题解状压DP代码实现T1&#xff1a;一个简单的询问 题目 给你一个长度为 N 的序列 ai ,1≤i≤N&#xff0c;和 q 组询问&#xff0c;每组询问读入 l1,r1,l…

微软发布新的 Azure Pipelines 功能和集成

在最近举行的Connect()大会上&#xff0c;微软发布了几项新功能以及与 Azure Pipelines 的集成&#xff0c;包括 Visual Studio Code 的 Azure Pipelines 扩展、GitHub 版本管理、对 IoT 项目的支持以及 ServiceNow 集成。自从 9 月份推出 Azure Pipelines 以来&#xff0c;这种…

平衡树练习总结

文章目录前言普通平衡树文艺平衡树郁闷的出纳员书架宠物收养场机械排序千山鸟飞绝总结前言 专门刷了一天半的平衡树 &#xff08;附带划水OvO&#xff09; 使用的是蜜汁常数的splay 感觉对平衡树的理解还是有帮助的 一些较为常规的平衡树的题应该是差不多了 更正之前刚学的观点…

二维树状数组

二维树状数组可以实现在平面上的区域加、区域查询等操作。 区域修改 我们在一维时维护树状数组的区间操作时&#xff0c;对其进行了差分。类比一维的思想&#xff0c;我们在二维平面上也对树状数组差分。 我们来看二维的前缀和&#xff1a; \[sum(i,j)sum(i-1,j)sum(i,j-1)-sum…

【AcWing 249. 蒲公英】

【AcWing 249. 蒲公英】 题意&#xff1a; 长度为n的序列&#xff0c;给定区间&#xff0c;求区间众数&#xff0c;如果出现次数相同&#xff0c;输出编号最小的 题解&#xff1a; 区间众数&#xff0c;不带修改&#xff0c;强制在线&#xff08;否则可以莫队&#xff09; …

年末展望:Oracle 对 JDK收费和.NET Core 给我们的机遇

2018年就结束了&#xff0c;马上就要迎来2019年&#xff0c;这一年很不平凡&#xff0c;中美贸易战还在继续&#xff0c;IT互联网发生急剧变化&#xff0c;大量互联网公司开始裁员&#xff0c;微软的市值在不断上升 &#xff0c;在互联网公司的市值下跌过程中爬到了第一的位置&…

等比数列三角形 (数论 + 黄金分割点)+ JOISC 2016 Day3 T3 「电报」(基环树 + 拓扑排序)

文章目录T1&#xff1a;等比数列三角形题目题解代码实现T2&#xff1a;电报题目题解代码实现T1&#xff1a;等比数列三角形 题目 求三边都是 ≤n 的整数&#xff0c;且成等比数列的三角形个数 注意三角形面积不能为 0 注意 oeis 中未收录此数列&#xff0c;所以并不需要去搜了…

模板:笛卡尔树

介绍 笛卡尔树是一种非常特殊的二叉搜索树。每个节点有两个信息x和y。如果只考虑 x&#xff0c;它是一棵二叉搜索树&#xff0c;如果只考虑 y&#xff0c;它是一个小根堆。 实现 按照y升序插入 显然应该插入到一条极右链上 但为了维护x二叉搜索树的性质 对于右链上x>当前…

乱搞

占个坑&#xff0c;找时间补

【AcWing 243. 一个简单的整数问题2】

例题&#xff1a;【AcWing 243. 一个简单的整数问题2】 线段树模板题&#xff0c;区间修改区间求和。 题解&#xff1a; 将序列分成N/B块&#xff0c;维护&#xff1a; id[i] i/B&#xff0c;i所在块标号 res[id] 第id块的sum base[id] 第id块的add标记修改时&#xff0…

CF1540B-Tree Array【数学期望,dp】

正题 题目链接:https://www.luogu.com.cn/problem/CF1540B 题目大意 nnn个点的一棵树&#xff0c;开始随机选择一个点标记&#xff0c;然后每次随机选择一个与被标记点连边的点标记&#xff0c;按照标记顺序排列&#xff0c;求期望逆序对数。 1≤n≤2001\leq n\leq 2001≤n≤2…

使用PerfView监测.NET程序性能(三):分组

在上一篇博客使用PerfView监测.NET程序性能&#xff08;二&#xff09;&#xff1a;Perfview的使用中&#xff0c;我们通过Perfview帮助文件中自带的代码来简单使用了Perfview&#xff0c;了解了基本操作。现在来看看Perfview中的分组操作&#xff08;Grouping&#xff09;。分…

【做题记录】构造题

CF468C Hack it! 题意&#xff1a; 令 \(F(x)\) 表示 \(x\) 的各个位上的数字之和&#xff0c;如 \(F(1234)123410\) 。 给定 \(a(a\le 10^{18})\) &#xff0c;请求出任意一组 \(l,r(l,r\le 10^{200})\) &#xff0c;要求满足&#xff1a; \[\sum_{il}^{r}F(i)\pmod{a}0 \]输出…

主席树 学习报告

文章目录前言可持久化线段树代码区间第k大代码练习粟粟的书架代码森林代码任务查询系统代码列队代码前言 主席树&#xff0c;全称是可持久化权值线段树 利用r和l-1两棵权值线段树作差得到[l,r]的信息 从而解决各种问题 在排名这方面功能极其强大 可持久化线段树 学主席树之前…

Star Way To Heaven (prim最小生成树) // [ NOIP提高组 2014]飞扬的小鸟(DP)

文章目录T1&#xff1a;Star Way To Heaven题目题解代码实现T2&#xff1a;飞扬的小鸟题目题解代码实现T1&#xff1a;Star Way To Heaven 题目 小 w 伤心的走上了 Star way to heaven。 到天堂的道路是一个笛卡尔坐标系上一个 n*m 的长方形通道 顶点在 (0,0) 和 (n,m) 。 小…

CF1043E Train Hard, Win Easy

CF1043E Train Hard, Win Easy 题意&#xff1a; n个人有Ai和Bi两个属性&#xff0c;给出m个关系&#xff1a;xi yi表示xi和yi不能配对 i,j两人规定匹配的价值为min (Ai Bj , Bi Aj ) 回答出每个人跟所有人配对&#xff08;除开不能和自己匹配的人&#xff09;的价值总和 …