正题
题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1227
题目大意
定义
F(a)=∑i=1alcm(a,i)aF(a)=\frac{\sum_{i=1}^a lcm(a,i)}{a}F(a)=a∑i=1alcm(a,i)
给出l,rl,rl,r求∑i=lrF(i)\sum_{i=l}^rF(i)∑i=lrF(i)
解题思路
好久没做数论题了
直接拆成两个前缀和的差,然后有
∑i=1n∑j=1ijgcd(i,j)\sum_{i=1}^n\sum_{j=1}^i\frac{j}{gcd(i,j)}i=1∑nj=1∑igcd(i,j)j
∑d=1n1d∑i=1n∑j=1ij[gcd(i,j)=d]\sum_{d=1}^n\frac{1}{d}\sum_{i=1}^n\sum_{j=1}^ij[gcd(i,j)=d]d=1∑nd1i=1∑nj=1∑ij[gcd(i,j)=d]
∑d=1n∑i=1⌊nd⌋∑j=1ij[gcd(i,j)=1]\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{i}j[gcd(i,j)=1]d=1∑ni=1∑⌊dn⌋j=1∑ij[gcd(i,j)=1]
12+∑d=1n∑i=1⌊nd⌋φ(i)i2\frac{1}{2}+\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\frac{\varphi(i)i}{2}21+d=1∑ni=1∑⌊dn⌋2φ(i)i
函数H(n)=φ(n)nH(n)=\varphi(n)nH(n)=φ(n)n可以用杜教筛,H×idH\times idH×id就可以得到n2n^2n2的函数。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define ll long long
using namespace std;
const ll N=5e6,P=1e9+7;
ll cnt,pri[N/10],phi[N];
bool v[N];map<ll,ll> mp;
void Prime(){phi[1]=1;for(ll i=2;i<N;i++){if(!v[i])pri[++cnt]=i,phi[i]=i-1;for(ll j=1;j<=cnt&&i*pri[j]<N;j++){v[i*pri[j]]=1;if(i%pri[j]==0){phi[i*pri[j]]=phi[i]*pri[j];break;}phi[i*pri[j]]=phi[i]*(pri[j]-1);}}for(ll i=1;i<N;i++)phi[i]=(phi[i]*i+phi[i-1])%P;return;
}
ll GetS(ll n)
{return n*(n+1)/2%P;}
ll GetSS(ll n)
{return n*(n+1)%P*(2*n+1)%P*((P+1)/6)%P;}
ll GetPhi(ll n){if(n<N)return phi[n];if(mp[n])return mp[n];ll ans=GetSS(n);for(ll l=2,r;l<=n;l=r+1){r=n/(n/l);(ans-=GetPhi(n/l)*(GetS(r)-GetS(l-1))%P)%=P;}mp[n]=ans;return ans;
}
ll solve(ll n){ll ans=0;if(!n)return 0;for(ll l=1,r;l<=n;l=r+1){r=n/(n/l);(ans+=(GetPhi(n/l)+1)*(r-l+1)%P)%=P;}return ans*((P+1)/2)%P;
}
signed main()
{ll l,r,ans;Prime();scanf("%lld%lld",&l,&r);ans=(solve(r)-solve(l-1))%P;printf("%lld\n",(ans+P)%P);return 0;
}