Acwing 217. 绿豆蛙的归宿

Acwing 217. 绿豆蛙的归宿

题意:

给出一个有向无环的连通图,起点为 1,终点为 N,每条边都有一个长度。

数据保证从起点出发能够到达图中所有的点,图中所有的点也都能够到达终点。

绿豆蛙从起点出发,走向终点。

到达每一个顶点时,如果有 K 条离开该点的道路,绿豆蛙可以选择任意一条道路离开该点,并且走向每条路的概率为 1/K。

现在绿豆蛙想知道,从起点走到终点所经过的路径总长度的期望是多少?

题解:

这个文章讲的不错
设dp[x]表示状态为x到终点n的期望路径总长,显然dp[n] = 0,所以要从dp[n]倒着推dp[1]
我们设一条有向边,x->y,那么就有:
dp[x] = P * ∑dp[y] + w[x->y]
P = (1/degree(x)),degree(x)为x的出度,有多少出度说明有多少种选择,概率就是倒数
w表示转移对答案的贡献
dp可以通过记忆化搜索求,也就通过拓扑排序求

代码:

记忆化搜索

#include<bits/stdc++.h>
#define debug(a,b) printf("%s = %d\n",a,b);
typedef long long ll;
using namespace std;inline int read(){int s=0,w=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();//s=(s<<3)+(s<<1)+(ch^48);return s*w;
}
const int maxn=3e5+9;
vector<pair<int,int> >vec[maxn]; 
double dp[maxn];
int n,m;
double dfs(int u){if(u==n)return 0;if(dp[u])return dp[u];for(int i=0;i<vec[u].size();i++){int v=vec[u][i].first;int w=vec[u][i].second;dp[u]+=dfs(v)+w;}dp[u]=dp[u]/int(vec[u].size());return dp[u];
}
int main()
{cin>>n>>m;for(int i=1;i<=m;i++){int u,v,w;cin>>u>>v>>w;vec[u].push_back({v,w});}printf("%.2f",dfs(1));
}

拓扑排序

时间复杂度O(n+m)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
const int inf=1e9+7;
inline int read()//读优
{int p=0,f=1;char c=getchar();while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}while(c>='0'&&c<='9'){p=p*10+c-'0';c=getchar();}return f*p;}
const int maxn=100003;
const int maxm=200003;
struct Edge
{int from,to,w;
}p[maxm];
int n,m,cnt,head[maxm],in[maxn],dg[maxn];
double f[maxn];//f[x]表示x点到终点n的期望路径总长 
inline void add_edge(int x,int y,int W)//加边
{cnt++;p[cnt].from=head[x];head[x]=cnt;p[cnt].to=y;p[cnt].w=W;
}
inline void toposort()//拓扑排序
{queue <int> q;q.push(n);while(!q.empty()){int x=q.front();q.pop();for(int i=head[x];i;i=p[i].from){int y=p[i].to;f[y]+=(f[x]+p[i].w)/dg[y];//dp转移 if(!(--in[y]))q.push(y);}}
}
int main()
{n=read(),m=read();for(int i=1;i<=m;i++){int x=read(),y=read(),w=read();add_edge(y,x,w);//反向建图 in[x]++,dg[x]++;}toposort();printf("%.2lf\n",f[1]);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316746.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LNOI2022:游记

前言 The world is cruel. 真的为身边的一些人感到可惜… Day -1 PKUSC刚刚考完&#xff0c;然后就要省选了&#xff1f; 板子实在是看的够够的了。 然而还是不想深度做题&#xff0c;看了看APIO的practise&#xff0c;T1写完发现偶数还得特别做&#xff0c;就感觉很麻烦&…

合肥.NET技术社区首次线下聚会全程回顾【多图】

2019年3月16日对于合肥.NET来说是一个特别的日子&#xff0c;因为这是合肥.NET技术社区首次非正式线下聚会&#xff01;这次聚会受场地限制&#xff08;毕竟是聚餐的形式&#xff09;&#xff0c;即使换成了小椅子后&#xff0c;最多也只能容纳24个人&#xff0c;所以还有一些小…

【无码专区10】第K大查询(双向链表 /主席树+st表)

已自我实现&#xff0c;但还是归入无码专区序列。哈哈哈哈哈 对于my idea部分&#xff0c;我的每一个想法都实现了&#xff0c;可供参考。 problem 给定一个 1∼n1\sim n1∼n 的排列和 kkk&#xff0c;求所有 r−l1≥kr-l1\ge kr−l1≥k 的区间 [l,r][l,r][l,r] 中的第 kkk 大…

SignalR第一节-在5分钟内完成通信连接和消息发送

前言首先声明&#xff0c;这又是一个小白从入门到进阶系列。 SignalR 这个项目我关注了很长时间&#xff0c;中间好像还看到过微软即将放弃该项目的消息&#xff0c;然后我也就没有持续关注了&#xff0c;目前的我项目中使用的是自己搭建的 WebSocket &#xff0c;连接管理和消…

P5327 [ZJOI2019]语言(线段树合并、生成树)

解析 只会扫描线树剖的三只log&#xff08;悲 考虑对每个 uuu 考虑合法的 vvv 的集合&#xff0c;必然是一个联通块。 进一步的&#xff0c;观察到这个联通块就是由所有经过 uuu 的路径的端点形成的最小生成树。 我们有一个最小生成树的经典结论&#xff1a;最小生成树边权和…

【学习笔记】信息学竞赛中的概率与期望小结

信息竞赛——概率与期望事件事件的蕴含、包含事件的互斥事件的对立事件的和&#xff08;并&#xff09;事件的积&#xff08;交&#xff09;事件的差概率事件的独立性全概率公式贝叶斯公式概率DP&#xff08;竞赛中的考察&#xff09;期望&#xff08;竞赛中的考察&#xff09;…

Acwing 218. 扑克牌

Acwing 218. 扑克牌 题意&#xff1a; 一副扑克牌(54张)&#xff0c;问得到A 张黑桃、B 张红桃、C 张梅花、D 张方块需要翻开的牌的张数的期望值 E 是多少&#xff1f; 如果翻开的牌是大王或者小王&#xff0c;Admin 将会把它作为某种花色的牌放入对应堆中&#xff0c;使得放…

尝试:Script Lab,快速 O365 开发工具//SL01)

《前言》Script Lab 我希望有一个系列&#xff08;连载&#xff09;&#xff0c;可是我挺担心没偿没有能力去驾驭它。虽然早年前己经接触过&#xff0c;但一直未有下决心开始 Office 365 的开发之旅&#xff0c;虽然一直被光标老师所鼓舞&#xff0c;但是我心有旁骛还没有真正做…

P3710 方方方的数据结构(kd-tree)

解析 写吐了… 一开始觉得线段树分治直接做就行简直是个伞兵题&#xff0c;写完挂掉才想起来线段树分治会打乱操作顺序导致全假… 重构吧&#xff01; 炸裂之下去贺题解&#xff0c;std做法 O(mmlog⁡m)O(m\sqrt m\log m)O(mm​logm) 令人谔谔&#xff0c;但kd-tree做法确实挺…

[POJ 3709] K-Anonymous Sequence(斜率优化dp / 动态维护凸包)

K-Anonymous Sequence看了两年前自己的博客&#xff0c;真的好青涩&#xff0c;连 markdown 都不太会用。 确实观赏感不是很好。 学习真的是慢慢积累的过程&#xff0c;以前感觉理解很困难的事&#xff0c;随着知识的增长&#xff0c;现在都基本悟了。 problem POJ3709 so…

Keiichi Tsuchiya the Drift King

Keiichi Tsuchiya the Drift King 题意&#xff1a; 给定一辆小车长宽分别为 b&#xff0c;a&#xff0c;轨道的圆弧部分半径为 r&#xff0c;圆弧对应的角度为 d&#xff0c;求出小车能通过轨道的最小轨道宽度 w。 题解&#xff1a; 我们考虑小车处于什么状态会使弯道最宽…

AspNet Core 下利用普罗米修斯+Grafana构建Metrics和服务器性能的监控

概述Prometheus是一套开源的监控&报警&时间序列数据库的组合,起始是由SoundCloud公司开发的。该项目有非常活跃的社区和开发人员&#xff0c;目前是独立的开源项目&#xff0c;现在最常见的Kubernetes容器管理系统中&#xff0c;通常也会搭配Prometheus进行监控。prome…

模板:pb_ds指南

科技改变生活 前言 本来一直被畏于巨长的声明&#xff0c;没有学这个东西… 直到 棘手的操作 这道题&#xff0c;pb_ds模拟实现的两个log的做法不仅好写的一批&#xff0c;连时间竟然也把我单log的左偏树爆踩了&#xff1f;&#xff1f;&#xff1f; … 我选择打不过就加入… …

【学习笔记】多重背包相关优化——二进制优化/单调队列优化

多重背包——二进制优化/单调队列优化二进制优化单调队列优化代码都是 POJ1742 的&#xff0c;注意&#xff0c;那道题二进制优化会超时。 普通的多重背包式子&#xff0c;物品个数限制&#xff1a;c[i]c[i]c[i]&#xff0c;单个物品价值 w[i]w[i]w[i]&#xff0c;每个物品的体…

Game of Swapping Numbers

Game of Swapping Numbers 题意&#xff1a; A&#xff0c;B两个数组&#xff0c;让你对A进行k次操作&#xff0c;每次操作为选两个位置的数&#xff0c;进行交换&#xff0c;求最大化的Σ|Ai-Bi| 题解&#xff1a; 以前有做过最小化的情况&#xff0c;就是把每次交换作定量…

软件工程真的是一门什么用都没有的学科么?

软件工程真的是一门什么用都没有的学科么&#xff1f;-----读《构建之法》有感楔子我很惭愧&#xff0c;构建之法这本书已经出版四五年了&#xff0c;我之前却未曾涉猎&#xff0c;还是在通过组织长沙.net技术社区之后&#xff0c;才因为因缘际遇有幸认识邹欣邹老师之后&#x…

Ball Dropping

Ball Dropping 题意&#xff1a; 求&#xff1f;的具体长度 题解&#xff1a; 算一算就出来了 代码&#xff1a; #include<bits/stdc.h> using namespace std; int main(){double r,a,b,h;cin>>r>>a>>b>>h;if(2*r<b&&2*r<…

[WF2011] MachineWorks(李超树优化dp)

[WF2011]MachineWorksproblem BZOJ3963 solution 来得比较快的是&#xff0c;直接设 dpi,j:dp_{i,j}:dpi,j​: 考虑第 jjj 天换购 iii 机器。 但是马上注意到天数是 1e91e91e9 级别的&#xff0c;而机器是 1e51e51e5 级别。 稍微想想&#xff0c;就能知道&#xff0c;因为…

P3644 [APIO2015]八邻旁之桥(中位数、堆)

前言 卡了很长时间的一个题。 一开始 k1 的关键性质把握就跑偏了&#xff0c;后面基本在硬做… 关键就是一直把每个人当成一条线段作为整体在看&#xff0c;使问题很复杂… 最后用 three-pointers 磕磕绊绊搞出来了。 但是根本不用&#xff01; 解析 这题关键就在于&#xf…

尝试:Script Lab,开发模式之知识储备//SL02

前期00&#xff1a;深度&#xff1a;从 Office 365 新图标来看微软背后的设计新理念前期01&#xff1a;尝试&#xff1a;Script Lab&#xff0c;快速 Office 365 开发工具 //SL01本期02&#xff1a;尝试&#xff1a;Script Lab&#xff0c;开发模式之知识储备 //SL02项目特点适…