LOAM_velodyne学习(四)

TransformMaintenance

来到了最后一个模块,代码不是很长,我们在看完代码之后,再详细说明这个模块的功能

依然主函数开始

int main(int argc, char** argv)
{ros::init(argc, argv, "transformMaintenance");ros::NodeHandle nh;//订阅了两个节点ros::Subscriber subLaserOdometry = nh.subscribe<nav_msgs::Odometry> ("/laser_odom_to_init", 5, laserOdometryHandler);ros::Subscriber subOdomAftMapped = nh.subscribe<nav_msgs::Odometry> ("/aft_mapped_to_init", 5, odomAftMappedHandler);//发布一个节点ros::Publisher pubLaserOdometry2 = nh.advertise<nav_msgs::Odometry> ("/integrated_to_init", 5);pubLaserOdometry2Pointer = &pubLaserOdometry2;laserOdometry2.header.frame_id = "/camera_init";laserOdometry2.child_frame_id = "/camera";tf::TransformBroadcaster tfBroadcaster2;tfBroadcaster2Pointer = &tfBroadcaster2;laserOdometryTrans2.frame_id_ = "/camera_init";laserOdometryTrans2.child_frame_id_ = "/camera";ros::spin();return 0;
}

主函数非常简单,可以看出integrated_to_init消息是由发布器pubLaserOdometry2发布的,实际上就是由发布器pubLaserOdometry2Pointer发布的。我们找到pubLaserOdometry2Pointer,发现回调函数laserOdometryHandler就是pubLaserOdometry2Pointer的发布函数,这意味着,发现每次接收到laser_odom_to_init消息并调用回调函数laserOdometryHandler时,就发布一次integrated_to_init消息。

看来重点是这个回调函数laserOdometryHandler,我们来仔细看看

void laserOdometryHandler(const nav_msgs::Odometry::ConstPtr& laserOdometry)
{double roll, pitch, yaw;//对收到的消息进行解析,得到transformSumgeometry_msgs::Quaternion geoQuat = laserOdometry->pose.pose.orientation;tf::Matrix3x3(tf::Quaternion(geoQuat.z, -geoQuat.x, -geoQuat.y, geoQuat.w)).getRPY(roll, pitch, yaw);transformSum[0] = -pitch;transformSum[1] = -yaw;transformSum[2] = roll;transformSum[3] = laserOdometry->pose.pose.position.x;transformSum[4] = laserOdometry->pose.pose.position.y;transformSum[5] = laserOdometry->pose.pose.position.z;//位姿更新transformAssociateToMap();//位姿信息进行存储,准备发布geoQuat = tf::createQuaternionMsgFromRollPitchYaw(transformMapped[2], -transformMapped[0], -transformMapped[1]);laserOdometry2.header.stamp = laserOdometry->header.stamp;laserOdometry2.pose.pose.orientation.x = -geoQuat.y;laserOdometry2.pose.pose.orientation.y = -geoQuat.z;laserOdometry2.pose.pose.orientation.z = geoQuat.x;laserOdometry2.pose.pose.orientation.w = geoQuat.w;laserOdometry2.pose.pose.position.x = transformMapped[3];laserOdometry2.pose.pose.position.y = transformMapped[4];laserOdometry2.pose.pose.position.z = transformMapped[5];pubLaserOdometry2Pointer->publish(laserOdometry2);laserOdometryTrans2.stamp_ = laserOdometry->header.stamp;laserOdometryTrans2.setRotation(tf::Quaternion(-geoQuat.y, -geoQuat.z, geoQuat.x, geoQuat.w));laserOdometryTrans2.setOrigin(tf::Vector3(transformMapped[3], transformMapped[4], transformMapped[5]));tfBroadcaster2Pointer->sendTransform(laserOdometryTrans2);
}

但是,这里还是有个小坑的。这个节点接收了两个消息,分别是laserOdometry节点和laserMapping节点发布的,而这两个节点发布的频率不同,那么是怎么处理的呢?

我们仔细看一看剩下的一个回调函数

void odomAftMappedHandler(const nav_msgs::Odometry::ConstPtr& odomAftMapped)
{double roll, pitch, yaw;geometry_msgs::Quaternion geoQuat = odomAftMapped->pose.pose.orientation;tf::Matrix3x3(tf::Quaternion(geoQuat.z, -geoQuat.x, -geoQuat.y, geoQuat.w)).getRPY(roll, pitch, yaw);transformAftMapped[0] = -pitch;transformAftMapped[1] = -yaw;transformAftMapped[2] = roll;transformAftMapped[3] = odomAftMapped->pose.pose.position.x;transformAftMapped[4] = odomAftMapped->pose.pose.position.y;transformAftMapped[5] = odomAftMapped->pose.pose.position.z;transformBefMapped[0] = odomAftMapped->twist.twist.angular.x;transformBefMapped[1] = odomAftMapped->twist.twist.angular.y;transformBefMapped[2] = odomAftMapped->twist.twist.angular.z;transformBefMapped[3] = odomAftMapped->twist.twist.linear.x;transformBefMapped[4] = odomAftMapped->twist.twist.linear.y;transformBefMapped[5] = odomAftMapped->twist.twist.linear.z;
}

也是很简单的解析函数,作用是在接收到了laserMapping的消息后,更新位姿,这里注意,laserMapping发布的是优化过后的位姿!看到这里,就逐渐能明白作者如何完成两个不同频率之间的协调了。

当接收到laserMapping的消息后,立马更新位姿,这样得到了优化的结果;而这个优化结果会被回调函数laserOdometryHandler​​​​​​​里的transformAssociateToMap这一个函数一直利用来建图,一直到下一次接收到laserMapping​​​​​​​的消息,再一次更新位姿,我们画图来说明:

也就是说,最后采用的位姿是TransformMaintenance发布的integrated_to_init消息。而且由上面的分析可知,TransformMaintenance的发布频率和laserOdometry的发布频率是一致的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/253936.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

oracle参数文件、控制文件、数据文件、日志文件的位置及查询方法

参数文件&#xff1a;所有参数文件一般在 $ORACLE_HOME/dbs 下 sqlplus查询语句&#xff1a;show parameter spfile; 网络连接文件&#xff1a; $ORACLE_HOME/dbs/network/admin 目录中 控制文件&#xff1a;select * from v$controlfile; 数据文件&#xff1a;一般在oracleda…

LeGO-LOAM学习

前言 在学习了LOAM之后&#xff0c;了解到LeGO-LOAM&#xff08;面向复杂情况的轻量级优化地面的雷达里程计&#xff09;&#xff0c;进行了一个学习整理。 Github&#xff1a;https://github.com/RobustFieldAutonomyLab/LeGO-LOAM 论文&#xff1a;https://github.com/Robu…

(一)低功耗设计目的与功耗的类型

一、低功耗设计的目的 1.便携性设备等需求 电子产品在我们生活中扮演了极其重要的作用&#xff0c;便携性的电子设备便是其中一种。便携性设备需要电池供电、需要消耗电池的能量。在同等电能提供下&#xff0c;低功耗设计的产品就能够工作更长的时间。时间的就是生命&#xff…

(转)彻底学会使用epoll(一)——ET模式实现分析

注&#xff1a;之前写过两篇关于epoll实现的文章&#xff0c;但是感觉懂得了实现原理并不一定会使用&#xff0c;所以又决定写这一系列文章&#xff0c;希望能够对epoll有比较清楚的认识。是请大家转载务必注明出处&#xff0c;算是对我劳动成果的一点点尊重吧。另外&#xff0…

Apache 设置http跳转至HTTPS访问

为什么80%的码农都做不了架构师&#xff1f;>>> <VirtualHost>...</VirtualHost> 中添加如下配置 <IfModule mod_rewrite.c>RewriteEngine onRewriteCond %{SERVER_PORT} 80RewriteRule ^(.*)$ https://域名/$1 [R301,L] </IfModule> 转…

(二)功耗的分析

前面学习了进行低功耗的目的个功耗的构成&#xff0c;今天就来分享一下功耗的分析。由于是面向数字IC前端设计的学习&#xff0c;所以这里的功耗分析是基于DC中的power compiler工具&#xff1b;更精确的功耗分析可以采用PT&#xff0c;关于PT的功耗分析可以查阅其他资料&#…

Hibernate创建hqll时报错

Hibernate 问题,在执行Query session.createQuery(hql) 报错误 出错截图&#xff1a; 这条语句在java运行环境下&#xff0c;直接连数据库不出错&#xff0c;如果在hiberante,struts环境下就出错 出错原因&#xff1a;jar包冲突&#xff0c;struts2和hibernate框架中都有antlr包…

.NET Core TDD 前传: 编写易于测试的代码 -- 全局状态

第1篇: 讲述了如何创造"缝". "缝"(seam)是需要知道的概念. 第2篇, 避免在构建对象时写出不易测试的代码. 第3篇, 依赖项和迪米特法则. 本文是第4篇, 将介绍全局状态引起的问题. 全局状态 全局状态, 也可以叫做应用程序状态, 它是一组变量, 这些变量维护着…

(三)系统与架构级低功耗设计

前面讲解了使用EDA工具&#xff08;主要是power compiler&#xff09;进行功耗分析的流程&#xff0c;这里我们将介绍在数字IC中进行低功耗设计的方法&#xff0c;同时也结合EDA工具&#xff08;主要是Design Compiler&#xff09;如何实现。我们的讲解的低功耗设计主要是自顶向…

(四)RTL级低功耗设计

前面介绍了系统级的低功耗设计&#xff0c;换句话说就是在系统级降低功耗可以考虑的方面。系统级的低功耗设计&#xff0c;主要是由系统级设计、具有丰富经验的人员实现&#xff0c;虽然还轮不到我们设计&#xff0c;我们了解一下还是比较好的。我们前端设计人员的重点不在系统…

Unity3D 游戏前端开发技能树(思维导图)

如果做游戏也是一种游戏,那么这个游戏的自由度实在是太高了.(导图源文件链接&#xff1a;http://pan.baidu.com/s/1eSHpH5o 密码&#xff1a;qzl5) 最近要用思维导图软件Xmind把自己的思路好好捋一捋,算是温故知新吧. 转载于:https://www.cnblogs.com/qiaogaojian/p/6098962.ht…

SQL Server 死锁的告警监控

原文:SQL Server 死锁的告警监控今天这篇文章总结一下如何监控SQL Server的死锁&#xff0c;其实以前写过MS SQL 监控错误日志的告警信息&#xff0c;这篇文章着重介绍如何监控数据库的死锁&#xff0c;当然这篇文章不分析死锁产生的原因、以及如何解决死锁。死锁&#xff08;D…

关于web性能一些特性汇总

关于web性能一些特性汇总 DOMContentLoaded & load load事件是window对象上的事件。指的是网页资源已经加载完毕&#xff08;包括但不限于DOM、图片、音频、脚本、插件资源以及CSS&#xff09;。 DOMContentLoaded事件是document对象上的事件。指的是DOM已经加载完毕。IE中…

(五)门级电路低功耗设计优化

&#xff08;1&#xff09;门级电路的功耗优化综述 门级电路的功耗优化(Gate Level Power Optimization&#xff0c;简称GLPO)是从已经映射的门级网表开始&#xff0c;对设计进行功耗的优化以满足功耗的约束&#xff0c;同时设计保持其性能&#xff0c;即满足设计规则和时序的要…

Spring3向Spring4升级过程中quartz修改

为什么80%的码农都做不了架构师&#xff1f;>>> 问题 nested exception is org.springframework.beans.factory.CannotLoadBeanClassException: Cannot find class [org.springframework.scheduling.quartz.CronTriggerBean] for bean with name ... 原因 org.spri…

EasyUI--messager

1.    alert 方法 <script type"text/javascript">$( function(){$.messager.alert("调用messager","文本内容") ;});</script> 这里还可以通过icon添加相应的图标及info加入回调函数 <script type"text/javascript&quo…

Redis学习第八课:Redis高级实用特性(一)

Redis高级实用特性 注&#xff1a;我学习的环境是vmware7.1 ubantu10.10 redis 3.0.2 1、安全性 设置客户端连接后进行任何其他指定前需要的密码。因为redis速度相当快&#xff0c;一个外部用户可以在一秒钟进行很多次的密码尝试&#xff0c;这就需要设定非常强大的密码来防止…

分布式缓存的面试题9

1、面试题 如何保证缓存与数据库的双写一致性&#xff1f; 2、面试官心里分析 你只要用缓存&#xff0c;就可能会涉及到缓存与数据库双存储双写&#xff0c;你只要是双写&#xff0c;就一定会有数据一致性的问题&#xff0c;那么你如何解决一致性问题&#xff1f; 3、面试题剖析…

ROS与navigation教程——概述

navigation是ROS的二维导航功能包&#xff0c;简单来说&#xff0c;就是根据输入的里程计等传感器的信息流和机器人的全局位置&#xff0c;通过导航算法&#xff0c;计算得出安全可靠的机器人速度控制指令。 代码库&#xff1a;https://github.com/ros-planning/navigation 代…

【设计模式】单例模式 Singleton Pattern

通常我们在写程序的时候会碰到一个类只允许在整个系统中只存在一个实例&#xff08;Instance&#xff09; 的情况&#xff0c; 比如说我们想做一计数器&#xff0c;统计某些接口调用的次数&#xff0c;通常我们的数据库连接也是只期望有一个实例。Windows系统的系统任务管理器…