TransformMaintenance
来到了最后一个模块,代码不是很长,我们在看完代码之后,再详细说明这个模块的功能
依然主函数开始
int main(int argc, char** argv)
{ros::init(argc, argv, "transformMaintenance");ros::NodeHandle nh;//订阅了两个节点ros::Subscriber subLaserOdometry = nh.subscribe<nav_msgs::Odometry> ("/laser_odom_to_init", 5, laserOdometryHandler);ros::Subscriber subOdomAftMapped = nh.subscribe<nav_msgs::Odometry> ("/aft_mapped_to_init", 5, odomAftMappedHandler);//发布一个节点ros::Publisher pubLaserOdometry2 = nh.advertise<nav_msgs::Odometry> ("/integrated_to_init", 5);pubLaserOdometry2Pointer = &pubLaserOdometry2;laserOdometry2.header.frame_id = "/camera_init";laserOdometry2.child_frame_id = "/camera";tf::TransformBroadcaster tfBroadcaster2;tfBroadcaster2Pointer = &tfBroadcaster2;laserOdometryTrans2.frame_id_ = "/camera_init";laserOdometryTrans2.child_frame_id_ = "/camera";ros::spin();return 0;
}
主函数非常简单,可以看出integrated_to_init消息是由发布器pubLaserOdometry2发布的,实际上就是由发布器pubLaserOdometry2Pointer发布的。我们找到pubLaserOdometry2Pointer,发现回调函数laserOdometryHandler就是pubLaserOdometry2Pointer的发布函数,这意味着,发现每次接收到laser_odom_to_init消息并调用回调函数laserOdometryHandler时,就发布一次integrated_to_init消息。
看来重点是这个回调函数laserOdometryHandler,我们来仔细看看
void laserOdometryHandler(const nav_msgs::Odometry::ConstPtr& laserOdometry)
{double roll, pitch, yaw;//对收到的消息进行解析,得到transformSumgeometry_msgs::Quaternion geoQuat = laserOdometry->pose.pose.orientation;tf::Matrix3x3(tf::Quaternion(geoQuat.z, -geoQuat.x, -geoQuat.y, geoQuat.w)).getRPY(roll, pitch, yaw);transformSum[0] = -pitch;transformSum[1] = -yaw;transformSum[2] = roll;transformSum[3] = laserOdometry->pose.pose.position.x;transformSum[4] = laserOdometry->pose.pose.position.y;transformSum[5] = laserOdometry->pose.pose.position.z;//位姿更新transformAssociateToMap();//位姿信息进行存储,准备发布geoQuat = tf::createQuaternionMsgFromRollPitchYaw(transformMapped[2], -transformMapped[0], -transformMapped[1]);laserOdometry2.header.stamp = laserOdometry->header.stamp;laserOdometry2.pose.pose.orientation.x = -geoQuat.y;laserOdometry2.pose.pose.orientation.y = -geoQuat.z;laserOdometry2.pose.pose.orientation.z = geoQuat.x;laserOdometry2.pose.pose.orientation.w = geoQuat.w;laserOdometry2.pose.pose.position.x = transformMapped[3];laserOdometry2.pose.pose.position.y = transformMapped[4];laserOdometry2.pose.pose.position.z = transformMapped[5];pubLaserOdometry2Pointer->publish(laserOdometry2);laserOdometryTrans2.stamp_ = laserOdometry->header.stamp;laserOdometryTrans2.setRotation(tf::Quaternion(-geoQuat.y, -geoQuat.z, geoQuat.x, geoQuat.w));laserOdometryTrans2.setOrigin(tf::Vector3(transformMapped[3], transformMapped[4], transformMapped[5]));tfBroadcaster2Pointer->sendTransform(laserOdometryTrans2);
}
但是,这里还是有个小坑的。这个节点接收了两个消息,分别是laserOdometry节点和laserMapping节点发布的,而这两个节点发布的频率不同,那么是怎么处理的呢?
我们仔细看一看剩下的一个回调函数
void odomAftMappedHandler(const nav_msgs::Odometry::ConstPtr& odomAftMapped)
{double roll, pitch, yaw;geometry_msgs::Quaternion geoQuat = odomAftMapped->pose.pose.orientation;tf::Matrix3x3(tf::Quaternion(geoQuat.z, -geoQuat.x, -geoQuat.y, geoQuat.w)).getRPY(roll, pitch, yaw);transformAftMapped[0] = -pitch;transformAftMapped[1] = -yaw;transformAftMapped[2] = roll;transformAftMapped[3] = odomAftMapped->pose.pose.position.x;transformAftMapped[4] = odomAftMapped->pose.pose.position.y;transformAftMapped[5] = odomAftMapped->pose.pose.position.z;transformBefMapped[0] = odomAftMapped->twist.twist.angular.x;transformBefMapped[1] = odomAftMapped->twist.twist.angular.y;transformBefMapped[2] = odomAftMapped->twist.twist.angular.z;transformBefMapped[3] = odomAftMapped->twist.twist.linear.x;transformBefMapped[4] = odomAftMapped->twist.twist.linear.y;transformBefMapped[5] = odomAftMapped->twist.twist.linear.z;
}
也是很简单的解析函数,作用是在接收到了laserMapping的消息后,更新位姿,这里注意,laserMapping发布的是优化过后的位姿!看到这里,就逐渐能明白作者如何完成两个不同频率之间的协调了。
当接收到laserMapping的消息后,立马更新位姿,这样得到了优化的结果;而这个优化结果会被回调函数laserOdometryHandler里的transformAssociateToMap这一个函数一直利用来建图,一直到下一次接收到laserMapping的消息,再一次更新位姿,我们画图来说明:
也就是说,最后采用的位姿是TransformMaintenance发布的integrated_to_init消息。而且由上面的分析可知,TransformMaintenance的发布频率和laserOdometry的发布频率是一致的。