一文读懂算法中的时间复杂度和空间复杂度,O(1)、O(logn)、O(n)、O(n^2)、O(2^n) 附举例说明,常见的时间复杂度,空间复杂度

时间复杂度和空间复杂度是什么

时间复杂度(Time Complexity)是描述算法运行时间长短的一个度量。空间复杂度(Space Complexity)是描述算法在运行过程中所需要的存储空间大小的一个度量。 
 
时间复杂度和空间复杂度是衡量算法性能的重要指标。在实际开发中,我们通常会选择时间复杂度和空间复杂度都较低的算法。 
 
时间复杂度可以用大O表示法来表示。大O表示法是用一个大写字母O来表示一个函数的增长率。例如,一个函数f(n)的增长率为O(n),表示当n趋于无穷大时,f(n)的增长率与n的增长率相同。 
 
空间复杂度也可以用大O表示法来表示。例如,一个函数f(n)的空间复杂度为O(n),表示当n趋于无穷大时,f(n)所需要的存储空间与n的增长率相同。 
 
在实际开发中,我们通常会选择时间复杂度和空间复杂度都较低的算法。例如,在排序算法中,我们通常会选择快速排序算法,而不是冒泡排序算法。这是因为快速排序算法的时间复杂度为O(nlogn),而冒泡排序算法的时间复杂度为O(n^2)。
 

常见的时间复杂度有哪些?

O(1):常数时间复杂度。表示算法运行时间与输入数据的大小无关。例如,求一个数的绝对值,无论这个数是多少,算法运行时间都是常数。 

例如:访问数组元素:如果我们有一个长度为n的数组,并且我们想要访问数组中的某个元素,那么无论n多大,访问该元素的时间复杂度都是O(1)。因为访问数组元素只需要一个固定的时间,与数组的大小无关。

算法实现:

    /*** 我们只处理数组中的第一个元素,无论数组中有多少个元素,* 算法的运行时间是固定的,所以时间复杂度为O(1)。** @param arr 数组*/public int constantTimeAlgorithm(int[] arr) {int firstElement = arr[0];// 在这里进行处理第一个元素的操作// ...return firstElement;}

O(logn):对数时间复杂度。表示算法运行时间与输入数据的对数成正比。例如,二分查找算法。

你可以这样理解:

假设你有一个长度为n的数列,你想找到某个数在数列中的位置。如果用顺序查找,你需要遍历整个数列,时间复杂度为O(n)。如果用二分查找,你只需要遍历数列的一半,时间复杂度为O(logn)。 随着n的增大,O(n)的增长速度要比O(logn)快得多。例如,当n=100时,O(n)的值为100,而O(logn)的值为7。当n=1000时,O(n)的值为1000,而O(logn)的值为10。 因此,O(logn)的时间复杂度比O(n)的时间复杂度要好得多。

复习一下计算过程:

当计算 log₂(100) 时,我们要找到一个数 x,使得 2 的 x 次方等于 100。换句话说,我们要求解以下方程:

2^x = 100

为了求解这个方程,我们可以使用对数的定义。根据定义,log₂(100) 就是满足 2 的 x 次方等于 100 的 x 值。

因此,我们可以将方程改写为:

x = log₂(100)

现在,我们需要计算 log₂(100) 的值。可以使用换底公式将其转化为常用对数或自然对数。换底公式如下:

log₂(100) = logₓ(100) / logₓ(2)

其中,x 可以是任意正数,我们可以选择常用对数(以 10 为底)或自然对数(以 e 为底)。这里我们选择常用对数。

所以,我们有:

log₂(100) = log₁₀(100) / log₁₀(2)

接下来,我们计算 log₁₀(100) 和 log₁₀(2) 的值:

log₁₀(100) ≈ 2     log₁₀(2) ≈ 0.30103

将这些值代入公式中,我们可以计算出 log₂(100) 的近似值:

log₂(100) ≈ log₁₀(100) / log₁₀(2) ≈ 2 / 0.30103 ≈ 6.6438561898

所以,log₂(100) 的近似值为 6.6438561898。

算法实现:

    /*** 代码中的binarySearch方法实现了对有序数组进行二分查找的算法。* 它将目标元素与数组的中间元素进行比较,若相等则返回中间元素的索引,若小于中间元素则在左子数组中继续查找,* 若大于中间元素则在右子数组中继续查找。通过不断缩小查找范围,直到找到目标元素或发现不存在目标元素。* * @param arr 数组* @param target 目标值* @return int*/public int binarySearch(int[] arr, int target) {int low = 0;int high = arr.length - 1;while (low <= high) {int mid = low + (high - low) / 2;if (arr[mid] == target) {return mid;} else if (arr[mid] < target) {low = mid + 1;} else {high = mid - 1;}}return -1; // 如果找不到目标元素,则返回-1}

O(n):线性时间复杂度。表示算法运行时间与输入数据的大小成正比。例如,冒泡排序算法。

你可以这样理解:

假设你有一个长度为n的数列,你想对这个数列进行排序。如果用冒泡排序,你需要遍历整个数列,然后将每个元素与它后面的元素进行比较,如果前一个元素比后一个元素大,就交换它们的位置。你需要重复这个过程,直到整个数列都被排序。 随着n的增大,O(n)的增长速度要比O(1)快得多。例如,当n=100时,O(n)的值为100,而O(1)的值为1。当n=1000时,O(n)的值为1000,而O(1)的值为1。 因此,O(n)的时间复杂度比O(1)的时间复杂度要差得多。

算法实现:

    /*** 这个方法计算整数数组的平均值* * 在这个算法中,我们遍历整个数组一次,所以时间复杂度是O(n),其中n是数组的长度。* 这是计算数组平均值的最佳时间复杂度,因为我们至少需要查看数组中的每个元素一次。** @param array 数组*/public static double calculateAverage(int[] array) {int sum = 0;for (int i = 0; i < array.length; i++) {sum += array[i];}return (double) sum / array.length;}

O(n^2):平方时间复杂度。表示算法运行时间与输入数据的平方成正比。例如,选择排序算法。

O(n^2) 是一个表示算法复杂度的概念。简单来说,当你运行一个O(n^2)的算法时,它的运行时间或步骤的数量会随着输入大小n的增加而增加。具体来说,这个算法的复杂度是指它的运行时间或步骤的数量与n的平方成正比。

举个例子,如果你有一个数组,你想计算每个元素与所有其他元素的组合,那么你需要对每个元素进行n次比较(n是数组的大小),总共需要进行n * n = n^2次比较。因此,这个算法的时间复杂度是O(n^2)。

总结一下,O(n^2) 表示当输入大小n增加时,算法的运行时间或步骤数量会以n的平方的速度增加。

代码实现:

    /*** 一个时间复杂度为O(n^2)的算法,常见的方法是使用嵌套循环。* 下面代码实现了一个冒泡排序算法。它通过嵌套循环遍历数组,并比较相邻的元素。* 如果前一个元素大于后一个元素,则交换它们的位置。通过多次遍历和交换,* 较大的元素会逐渐向数组的末尾冒泡。* 这个过程将重复执行n-1次,每次循环都需要比较n-i-1次。因此,总的比较次数为:** n-1 + n-2 + ... + 1 = n * (n-1) / 2,** 最终得到时间复杂度为O(n^2)。** @param arr 数组*/public void bubbleSort(int[] arr) {int n = arr.length;for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {// 交换arr[j]和arr[j + 1]int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}

O(n^3):立方时间复杂度。表示算法运行时间与输入数据的立方成正比。

如果你有一个非常大的数组,并且你想计算每个元素与所有其他元素的组合的乘积,那么你需要对每个元素进行n次比较,然后再进行一次乘法操作。所以总共需要进行n * n = n^2次比较,以及n * n * n = n^3次乘法操作。因此,这个算法的时间复杂度是O(n^3)。

O(2^n):指数时间复杂度。表示算法运行时间与输入数据的指数成正比。例如,汉诺塔问题,斐波那契数列。

斐波那契数列:斐波那契数列是一个非常著名的数列,其中每个数字都是前两个数字的和。对于斐波那契数列的第n项,我们可以通过递归或迭代来计算。但是,由于递归的重复计算,其时间复杂度是O(2^n)。这是因为每次递归都会生成一个新的项,导致重复计算大量前面的项,因此总体时间复杂度是指数级的增长。

算法实现:

    /*** 这个代码中,generatePowerSet方法会生成一个数组的所有子集。* 我们通过两个嵌套的循环来实现这一点。外部循环遍历2^n个可能的子集* (因为每个元素都可以在子集中或不在子集中,所以总共有2^n个子集),* 内部循环则根据当前子集的二进制表示来决定是否将数组中的元素添加到子集中。* 如果二进制表示的某一位为1,那么就将对应的元素添加到子集中。* * @param array 数组* @return List<List<Integer>>*/public static List<List<Integer>> generatePowerSet(int[] array) {List<List<Integer>> powerSet = new ArrayList<>();int n = array.length;for (int i = 0; i < (1 << n); i++) {List<Integer> subset = new ArrayList<>();for (int j = 0; j < n; j++) {if (((i >> j) & 1) == 1) {subset.add(array[j]);}}powerSet.add(subset);}return powerSet;}

常见的空间复杂度有哪些?

算法的空间复杂度是评估算法在执行过程中所需额外存储空间的重要指标。以下是算法空间复杂度的一些常见类型:

  • 常数空间复杂度(O(1)):算法执行过程中仅需要固定大小的额外空间。无论输入规模大小,所需的额外空间保持不变。
  • 线性空间复杂度(O(n)):算法执行过程中所需的额外空间与输入规模线性相关。随着输入规模的增长,所需的空间也按比例增长。
  • 对数空间复杂度(O(log n)):算法执行过程中所需的额外空间与输入规模的对数成正比。即使输入规模较大,所需的额外空间也会相对较少。
  • 平方空间复杂度(O(n^2)):算法执行过程中所需的额外空间与输入规模的平方成正比。随着输入规模的增长,所需的空间会以平方的速度增长。
  • 立方空间复杂度(O(n^3)):算法执行过程中所需的额外空间与输入规模的立方成正比。随着输入规模的增长,所需的空间会以立方的速度增长。
  • 指数空间复杂度(O(2^n)):算法执行过程中所需的额外空间与输入规模的指数成正比。随着输入规模的增长,所需的空间会以指数的速度增长。

这些空间复杂度类型可以用于评估算法在处理不同规模输入时所需的额外存储空间的大小。选择合适的算法和数据结构可以优化空间复杂度,以适应不同规模的需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/226223.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python读写arxml文件

文章目录 前言一、XML简介二、XML文件结构三、Python读取xml文件安装ElementTree库读取xml文件四、Python写入xml文件前言 本文主要通过介绍arxml文件,为后续python脚本开发奠定基础。 arxml是AUTOSAR XML的简称,是一个通用的配置/数据库文件,实质是一个xml文件。 ①更规范…

Mysql查询条件为大于时,不走索引失效场景

如下 where a>1 and b2 是不走索引。 因为a>1 &#xff0c; (这里说的是&#xff0c;a是走了索引&#xff0c;但是b没有走&#xff0c;为什么了&#xff1f;因为b只有在a相同时&#xff0c;b才有序,也就是说这个联合索引只用到了一半)的数据是无序的(1 4 1 2)&#xff0…

WGAN 优势小结

我在上一篇博文为什么 GAN 不好训练中&#xff0c;分析了原始 GAN 难以训练的原因&#xff0c;本篇博文将分析下 WGAN 的优势。 1. Wasserstein 距离 W 是指 Wasserstein&#xff0c;Wasserstein 距离又叫Earth-Mover&#xff08;EM&#xff09;距离。Wasserstein距离相比KL散…

ubuntu18.04 安装yolov5环境及推理环境

文章目录 1、安装anaconda31.2、环境变量配置1.3、添加/更换 conda 清华源 2、安装pytorch1.63、CUDA安装4、安装cuDNN5、安装tensorRT6、安装opencv4.67、tensorRT部署yolov5模型推理 1、安装anaconda3 官方网网址 https://www.anaconda.com/download#downloads去到下载的文…

心理测试网站源码,知己心理React心理健康测试

源码介绍 React心理健康测试网站源码&#xff0c;帮助需要的人更好地了解自已的心理健康状态和人格特征。 React可以在Vite中启用HMR&#xff0c;并且包含了几人EsLint规则。只需要使用react antd-mobile即可 轻松部署完成。

数据分析为何要学统计学(9)——总体不服从正态分布时使用什么假设检验方法?

大多数情况下&#xff0c;我们都假设样本所在总体服从正态分布&#xff0c;然后使用t检验、方差分析等假设检验方法。但是总体如果不服从正态分布&#xff0c;那么就得使用非参数检验方法&#xff0c;如Mann-Whitney U检验和Wilcoxon秩和检验。其中Mann-Whitney U检验适用于独立…

千梦网创:逮住一闪而过的机会疯狂摩擦

我这个人平时想的就多&#xff0c;睡觉也在想事情&#xff0c;有时候睡觉里想的事情往往都是很纯粹的、很绝妙的&#xff0c;但是经常性一醒过来就忘了&#xff0c;再去回忆怎么也想不起来了。 灵感只在特定的环境下产生&#xff0c;这类环境是不可再生和模拟的。 机会只因特…

【C++11特性篇】盘点C++11中三种简化声明的方式【auto】【decltype】【nullptr】(3)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.auto&#xff06;范围for二.decltyp…

用Python快速从深层嵌套 JSON 中找到特定的 Value

有时候&#xff0c;我们拿到一个JSON数据的时候&#xff0c;会难以看出其逻辑层次结构。 这时候就需要我们进行代码解析了。 代码&#xff1a; import jsondef find_json_value(data_json, value, path""):if isinstance(data_json, dict):for k, v in data_json.…

JS解构赋值:

数组解构&#xff1a; 将数组的单元值快速批量的赋值给一系列变量的简洁语法 变量的顺序对应数组单元值的位置依次进行赋值操作 const arr [100,60,80];//数组解构 赋值const [max,min,avg] arr;//const [max,min,avg] [100,60,80];// const max arr[0];// const min ar…

Web 应用程序性能测试核心步骤

通常大家做web 应用程序的时候会有哪些操作呢&#xff1f;今天就来看看常见的web 应用程序的常见操作。 Web 应用程序性能测试核心步骤 1&#xff1a;识别测试环境。确定物理测试环境和生产环境&#xff0c;以及测试团队可用的工具和资源。物理环境包括硬件、软件和网络配置。…

决策单调性 => 二分队列:P3515

https://www.luogu.com.cn/problem/P3515 p i max ⁡ j 1 n ( a j ∣ i − j ∣ ) − a i p_i\max_{j1}^n(a_j\sqrt {|i-j|})-a_i pi​maxj1n​(aj​∣i−j∣ ​)−ai​&#xff0c; p p p 之间独立&#xff0c;直接拆绝对值&#xff0c;到时候reverse再做一遍即可。 拆绝对…

c语言单向链表

看如下代码&#xff0c;这是一个完整的可运行的c源文件&#xff0c;要注意的点&#xff1a; c语言程序运行不一定需要头文件NULL其实是 (void*)0&#xff0c;把指针赋值成(void*)0,就是防止程序员不想该指针被引用的时候被引用&#xff0c;引用地址为0的值程序会引起系统中断&…

PyQt6 QSpacerItem弹簧控件

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计46条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

00后卷王的自述,我难道真的很卷?

前言 前段时间去面试了一个公司&#xff0c;成功拿到了offer&#xff0c;薪资也从12k涨到了18k&#xff0c;对于工作都还没两年的我来说&#xff0c;还是比较满意的&#xff0c;毕竟一些工作3、4年的可能还没我高。 我可能就是大家说的卷王&#xff0c;感觉自己年轻&#xff…

自动化访客互动:提升网站效益与用户体验的关键优势

在激烈的市场竞争环境中&#xff0c;想抢占市场&#xff0c;获得收益并不容易。每一个订单的完成都要经过一定的销售周期&#xff0c;所以企业可以根据销售周期每个阶段的特点进行优化&#xff0c;留住客户。其中&#xff0c;企业可以在与客户在线互动的过程中&#xff0c;让互…

ShardingSphere-JDBC 和 ShardingSphere-Proxy,你选择哪一个

参考文章 总结&#xff1a; 只使用Java&#xff0c;ShardingSphere-JDBC更好有异构语言的话&#xff0c;ShardingSphere-Proxy 更好混用也挺香

Spring Boot 默认缓存

Spring 提供了三个常用的注解&#xff1a;Cacheable、CachePut 和 CacheEvict 一、Cacheable&#xff0c;CachePut&#xff0c;CacheEvict区别 当使用缓存时&#xff0c;Spring 提供了三个常用的注解&#xff1a;Cacheable、CachePut 和 CacheEvict&#xff0c;它们的区别如下…

Balking(犹豫)设计模式

多个线程监控某个共享变量&#xff0c;A线程监控到共享变量发生变化后即将触发某个动作&#xff0c;但此时发现有另外一个线程B已经针对该变量的变化开始了行动&#xff0c;因此A便放弃了准备开始的工作&#xff0c;我们把这样的线程交互称为Balking&#xff08;犹豫&#xff0…

小红书商品详情API:电商助力

一、引言 随着互联网的普及和电商行业的快速发展&#xff0c;消费者对于商品信息的获取方式也在不断变化。小红书作为一款以内容分享为主的社交电商平台&#xff0c;吸引了大量用户。为了满足用户对商品信息的快速获取需求&#xff0c;小红书提供了商品详情API接口。本文将探讨…