计算目标检测和语义分割的PR

需求描述

  1. 实际工作中,相比于mAP项目更加关心的是特定阈值下的precision和recall结果;
  2. 由于本次的GT中除了目标框之外还存在多边形标注,为此,计算IoU的方式从框与框之间变成了mask之间
    本文的代码适用于MMDetection下的预测结果和COCO格式之间来计算PR结果,具体的实现过程如下:
  • 获取预测结果并保存到json文件中;
  • 解析预测结果和GT;
  • 根据image_id获取每张图的预测结果和GT;
  • 基于mask计算预测结果和GT之间的iou矩阵;
  • 根据iou矩阵得到对应的tp、fp和num_gt;
  • 迭代所有的图像得到所有的tp、fp和num_gt累加,根据公式计算precision和recall;

具体实现

获取预测结果

在MMDetection框架下,通常使用如下的命令来评估模型的结果:

bash tools/dist_test.sh configs/aaaa/gaotie_cascade_rcnn_r50_fpn_1x.py work_dirs/gaotie_cascade_rcnn_r50_fpn_1x/epoch_20.pth 8 --eval bbox

此时能获取到类似下图的mAP结果。
mAP)
而我们需要在某个过程把预测结果保存下,用于后续得到PR结果,具体可以在mmdet/datasets/coco.py的438行位置添加如下代码:

 try:import shutilcocoDt = cocoGt.loadRes(result_files[metric])shutil.copyfile(result_files[metric], "results.bbox.json")

这样我们就可以得到results.bbox.json文件,里面包含的是模型的预测结果,如下图所示。
在这里插入图片描述)

获取GT结果

由于标注时有两个格式:矩形框和多边形,因此在构建GT的coco格式文件时,对于矩形框会将其四个顶点作为多边形传入到segmentations字段,对于多边形会计算出外接矩形传入到bbox字段。
在这里插入图片描述)
为此,获取GT信息的脚本实现如下:

def construct_gt_results(gt_json_path):results = dict()bbox_results = dict()cocoGt = COCO(annotation_file=gt_json_path)# cat_ids = cocoGt.getCatIds()img_ids = cocoGt.getImgIds()for id in img_ids:anno_ids = cocoGt.getAnnIds(imgIds=[id])annotations = cocoGt.loadAnns(ids=anno_ids)for info in annotations:img_id = info["image_id"]if img_id not in results:results[img_id] = list()bbox_results[img_id] = list()bbox = info["bbox"]x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]# results[img_id].append([x1, y1, x2, y2])# mask = _poly2mask(info["segmentation"], img_h=1544, img_w=2064)results[img_id].append(info["segmentation"])bbox_results[img_id].append([x1, y1, x2, y2])return results, img_ids, cocoGt, bbox_results

输入GT的json文件路径,返回所有图像的分割结果,image_id,COCO对象和目标框结果(用于后续的可视化结果)。

获取预测结果

模型预测出来的结果都是目标框的形式,与上面一样,将目标框的四个顶点作为多边形的分割结果。具体解析脚本如下:

def construct_det_results(det_json_path):results = dict()bbox_results = dict()scores  = dict()with open(det_json_path) as f:json_data = json.load(f)for info in json_data:img_id = info["image_id"]if img_id not in results:results[img_id] = list()scores[img_id] = list()bbox_results[img_id] = list()bbox = info["bbox"]x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]segm = [[x1, y1, x2, y1, x2, y2, x1, y2]]# mask = _poly2mask(segm, img_h=1544, img_w=2064)score = info["score"]# results[img_id].append([x1, y1, x2, y2, score])results[img_id].append(segm)bbox_results[img_id].append([x1, y1, x2, y2])scores[img_id].append(score)return results, scores, bbox_results

输入的是预测结果的json文件路径,输出是所有图像分割结果、得分和目标框结果。

根据image_id计算单个图像的TP、FP结果

本步骤的具体内容如下:

  1. 根据置信度阈值对预测框进行筛选;
  2. 将所有的多边形转换为mask,用于后续计算IoU;
  3. 得到tp和fp;
  4. 可视化fp和fn结果;

将多边形转换为mask

    if img_id in det_results:# for dt in det_results[img_id]:for idx, score in enumerate(det_scores[img_id]):# score = dt[-1]if score > conf_thrs:mask = _poly2mask(det_results[img_id][idx], img_h=1544, img_w=2064)det_bboxes.append(mask)det_thrs_scores.append(score)plot_det_bboxes.append(det_tmp_bboxes[img_id][idx])if img_id in gt_results:     for segm in gt_results[img_id]:mask = _poly2mask(segm, img_h=1544, img_w=2064)   gt_bboxes.append(mask)plot_gt_bboxes = gt_tmp_bboxes[img_id]

通过_poly2mask函数可以将多边形转换为mask,_poly2mask函数的实现如下。

def _poly2mask(mask_ann, img_h, img_w):"""Private function to convert masks represented with polygon tobitmaps.Args:mask_ann (list | dict): Polygon mask annotation input.img_h (int): The height of output mask.img_w (int): The width of output mask.Returns:numpy.ndarray: The decode bitmap mask of shape (img_h, img_w)."""if isinstance(mask_ann, list):# polygon -- a single object might consist of multiple parts# we merge all parts into one mask rle coderles = maskUtils.frPyObjects(mask_ann, img_h, img_w)rle = maskUtils.merge(rles)elif isinstance(mask_ann['counts'], list):# uncompressed RLErle = maskUtils.frPyObjects(mask_ann, img_h, img_w)else:# rlerle = mask_annmask = maskUtils.decode(rle)return mask

计算单张图像的TP和FP

本文中使用tpfp_default函数实现该功能,具体实现如下:

def tpfp_default(det_bboxes,gt_bboxes,gt_bboxes_ignore=None,det_thrs_scores=None,iou_thr=0.5,area_ranges=None):"""Check if detected bboxes are true positive or false positive.Args:det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,of shape (k, 4). Default: Noneiou_thr (float): IoU threshold to be considered as matched.Default: 0.5.area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,in the format [(min1, max1), (min2, max2), ...]. Default: None.Returns:tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape ofeach array is (num_scales, m)."""# an indicator of ignored gtsgt_ignore_inds = np.concatenate((np.zeros(gt_bboxes.shape[0], dtype=np.bool),np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))# stack gt_bboxes and gt_bboxes_ignore for convenience# gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))num_dets = det_bboxes.shape[0]num_gts = gt_bboxes.shape[0]if area_ranges is None:area_ranges = [(None, None)]num_scales = len(area_ranges)# tp and fp are of shape (num_scales, num_gts), each row is tp or fp of# a certain scaletp = np.zeros((num_scales, num_dets), dtype=np.float32)fp = np.zeros((num_scales, num_dets), dtype=np.float32)# if there is no gt bboxes in this image, then all det bboxes# within area range are false positivesif gt_bboxes.shape[0] == 0:if area_ranges == [(None, None)]:fp[...] = 1else:det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0] + 1) * (det_bboxes[:, 3] - det_bboxes[:, 1] + 1)for i, (min_area, max_area) in enumerate(area_ranges):fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1return tp, fp# ious = bbox_overlaps(det_bboxes, gt_bboxes)# ious = mask_overlaps(det_bboxes, gt_bboxes)ious = mask_wraper(det_bboxes, gt_bboxes)# for each det, the max iou with all gtsious_max = ious.max(axis=1)# for each det, which gt overlaps most with itious_argmax = ious.argmax(axis=1)# sort all dets in descending order by scores# sort_inds = np.argsort(-det_bboxes[:, -1])sort_inds = np.argsort(-det_thrs_scores)for k, (min_area, max_area) in enumerate(area_ranges):gt_covered = np.zeros(num_gts, dtype=bool)# if no area range is specified, gt_area_ignore is all Falseif min_area is None:gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)else:gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * (gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1)gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)for i in sort_inds:if ious_max[i] >= iou_thr:matched_gt = ious_argmax[i]     # 得到对应的GT索引if not (gt_ignore_inds[matched_gt]or gt_area_ignore[matched_gt]):if not gt_covered[matched_gt]:gt_covered[matched_gt] = True   # GT占位tp[k, i] = 1            else:fp[k, i] = 1# otherwise ignore this detected bbox, tp = 0, fp = 0elif min_area is None:fp[k, i] = 1else:bbox = det_bboxes[i, :4]area = (bbox[2] - bbox[0] + 1) * (bbox[3] - bbox[1] + 1)if area >= min_area and area < max_area:fp[k, i] = 1return tp, fp

过程是先获取预测框和GT框之间的IoU矩阵,然后按照置信度排序,将每个预测框分配给GT框得到tp和fp结果。

计算mask的IoU

IoU的定义都是一样的,计算公式如下:
在这里插入图片描述
基于mask计算IoU的实验也非常简单,代码如下:

def mask_overlaps(bboxes1, bboxes2, mode='iou'):assert mode in ['iou', 'iof']bboxes1 = bboxes1.astype(np.bool_)bboxes2 = bboxes2.astype(np.bool_)intersection = np.logical_and(bboxes1, bboxes2)union = np.logical_or(bboxes1, bboxes2)intersection_area = np.sum(intersection)union_area = np.sum(union)iou = intersection_area / union_areareturn iou

而计算预测框和GT之间的IoU矩阵实现如下:

def mask_wraper(bboxes1, bboxes2, mode='iou'):rows = bboxes1.shape[0]     # gtcols = bboxes2.shape[0]     # detious = np.zeros((rows, cols), dtype=np.float32)if rows * cols == 0:return iousfor i in range(rows):for j in range(cols):iou = mask_overlaps(bboxes1[i], bboxes2[j])ious[i, j] = ioureturn ious

至此,通过上述过程就能获取到单张图像的tp和fp结果。

可视化FP和FN结果

此外,我们需要分析模型的badcase,因此,可以将FP和FN的结果可视化出来,我这里是直接将存在问题的图像所有预测框和GT框都画出来了。

    if VIS and (fp > 0 or tp < gt):img_data, path = draw_bbox(img_id=img_id, cocoGt=cocoGt, det_bboxes=plot_det_bboxes, gt_bboxes=plot_gt_bboxes)if fp > 0:save_dir = os.path.join(VIS_ROOT, "tmp/FP/")os.makedirs(save_dir, exist_ok=True)cv2.imwrite(os.path.join(save_dir, os.path.basename(path)+".jpg"), img_data, [int(cv2.IMWRITE_JPEG_QUALITY), 30])if tp < gt:save_dir = os.path.join(VIS_ROOT, "tmp/FN/")os.makedirs(save_dir, exist_ok=True)cv2.imwrite(os.path.join(save_dir, os.path.basename(path)+".jpg"), img_data,[int(cv2.IMWRITE_JPEG_QUALITY), 30])

画框的实现如下:

def draw_bbox(img_id, cocoGt, det_bboxes, gt_bboxes):path = cocoGt.loadImgs(ids=[img_id])[0]["file_name"]img_path = os.path.join(IMG_ROOT, path)img_data = cv2.imread(img_path)for box in det_bboxes:# color_mask = (0, 0, 255)# color_mask = np.array([0, 0, 255], dtype=np.int8)# bbox_mask = box.astype(np.bool)cv2.rectangle(img_data, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 3)# img_data[bbox_mask] = img_data[bbox_mask] * 0.5 + color_mask * 0.5for box in gt_bboxes:# color_mask = np.array([0, 255, 0], dtype=np.int8)# bbox_mask = box.astype(np.bool)# img_data[bbox_mask] = img_data[bbox_mask] * 0.5 + color_mask * 0.5cv2.rectangle(img_data, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 3)return img_data, path

至此,我们实现了单张图像的所有业务逻辑。

多线程计算所有图像结果

通过multiprocessing启动一个进程池来加速结果计算。

def eval_multiprocessing(img_ids):from multiprocessing import Poolpool = Pool(processes=16)results = pool.map(eval_pr, img_ids)# 关闭进程池,表示不再接受新的任务pool.close()# 等待所有任务完成pool.join()return np.sum(np.array(results), axis=0)

计算PR结果

返回所有图像的TP和FP结果之后,就可以计算precision和recall值了。

gt, tp, fp = eval_multiprocessing(img_ids)
eps = np.finfo(np.float32).eps
recalls = tp / np.maximum(gt, eps)
precisions = tp / np.maximum((tp + fp), eps)print("conf_thrs:{:.3f} iou_thrs:{:.3f}, gt:{:d}, TP={:d}, FP={:d}, P={:.3f}, R={:.3f}".format(conf_thrs, iou_thrs, gt, tp, fp, precisions, recalls))

最后,也附上整个实现代码,方便后续复现或者参考。

from multiprocessing import Pool
import os
import numpy as np
import json
from pycocotools.coco import COCO
import cv2
from pycocotools import mask as maskUtilsdef bbox_overlaps(bboxes1, bboxes2, mode='iou'):"""Calculate the ious between each bbox of bboxes1 and bboxes2.Args:bboxes1(ndarray): shape (n, 4)bboxes2(ndarray): shape (k, 4)mode(str): iou (intersection over union) or iof (intersectionover foreground)Returns:ious(ndarray): shape (n, k)"""assert mode in ['iou', 'iof']bboxes1 = bboxes1.astype(np.float32)bboxes2 = bboxes2.astype(np.float32)rows = bboxes1.shape[0]cols = bboxes2.shape[0]ious = np.zeros((rows, cols), dtype=np.float32)if rows * cols == 0:return iousexchange = Falseif bboxes1.shape[0] > bboxes2.shape[0]:bboxes1, bboxes2 = bboxes2, bboxes1ious = np.zeros((cols, rows), dtype=np.float32)exchange = Truearea1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (bboxes1[:, 3] - bboxes1[:, 1] + 1)area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (bboxes2[:, 3] - bboxes2[:, 1] + 1)for i in range(bboxes1.shape[0]):x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0])y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1])x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2])y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3])overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum(y_end - y_start + 1, 0)if mode == 'iou':union = area1[i] + area2 - overlapelse:union = area1[i] if not exchange else area2ious[i, :] = overlap / unionif exchange:ious = ious.Treturn iousdef mask_wraper(bboxes1, bboxes2, mode='iou'):rows = bboxes1.shape[0]     # gtcols = bboxes2.shape[0]     # detious = np.zeros((rows, cols), dtype=np.float32)if rows * cols == 0:return iousfor i in range(rows):for j in range(cols):iou = mask_overlaps(bboxes1[i], bboxes2[j])ious[i, j] = ioureturn iousdef mask_overlaps(bboxes1, bboxes2, mode='iou'):assert mode in ['iou', 'iof']bboxes1 = bboxes1.astype(np.bool_)bboxes2 = bboxes2.astype(np.bool_)intersection = np.logical_and(bboxes1, bboxes2)union = np.logical_or(bboxes1, bboxes2)intersection_area = np.sum(intersection)union_area = np.sum(union)iou = intersection_area / union_areareturn ioudef tpfp_default(det_bboxes,gt_bboxes,gt_bboxes_ignore=None,det_thrs_scores=None,iou_thr=0.5,area_ranges=None):"""Check if detected bboxes are true positive or false positive.Args:det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,of shape (k, 4). Default: Noneiou_thr (float): IoU threshold to be considered as matched.Default: 0.5.area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,in the format [(min1, max1), (min2, max2), ...]. Default: None.Returns:tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape ofeach array is (num_scales, m)."""# an indicator of ignored gtsgt_ignore_inds = np.concatenate((np.zeros(gt_bboxes.shape[0], dtype=np.bool),np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))# stack gt_bboxes and gt_bboxes_ignore for convenience# gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))num_dets = det_bboxes.shape[0]num_gts = gt_bboxes.shape[0]if area_ranges is None:area_ranges = [(None, None)]num_scales = len(area_ranges)# tp and fp are of shape (num_scales, num_gts), each row is tp or fp of# a certain scaletp = np.zeros((num_scales, num_dets), dtype=np.float32)fp = np.zeros((num_scales, num_dets), dtype=np.float32)# if there is no gt bboxes in this image, then all det bboxes# within area range are false positivesif gt_bboxes.shape[0] == 0:if area_ranges == [(None, None)]:fp[...] = 1else:det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0] + 1) * (det_bboxes[:, 3] - det_bboxes[:, 1] + 1)for i, (min_area, max_area) in enumerate(area_ranges):fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1return tp, fp# ious = bbox_overlaps(det_bboxes, gt_bboxes)# ious = mask_overlaps(det_bboxes, gt_bboxes)ious = mask_wraper(det_bboxes, gt_bboxes)# for each det, the max iou with all gtsious_max = ious.max(axis=1)# for each det, which gt overlaps most with itious_argmax = ious.argmax(axis=1)# sort all dets in descending order by scores# sort_inds = np.argsort(-det_bboxes[:, -1])sort_inds = np.argsort(-det_thrs_scores)for k, (min_area, max_area) in enumerate(area_ranges):gt_covered = np.zeros(num_gts, dtype=bool)# if no area range is specified, gt_area_ignore is all Falseif min_area is None:gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)else:gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * (gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1)gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)for i in sort_inds:if ious_max[i] >= iou_thr:matched_gt = ious_argmax[i]     # 得到对应的GT索引if not (gt_ignore_inds[matched_gt]or gt_area_ignore[matched_gt]):if not gt_covered[matched_gt]:gt_covered[matched_gt] = True   # GT占位tp[k, i] = 1            else:fp[k, i] = 1# otherwise ignore this detected bbox, tp = 0, fp = 0elif min_area is None:fp[k, i] = 1else:bbox = det_bboxes[i, :4]area = (bbox[2] - bbox[0] + 1) * (bbox[3] - bbox[1] + 1)if area >= min_area and area < max_area:fp[k, i] = 1return tp, fpdef _poly2mask(mask_ann, img_h, img_w):"""Private function to convert masks represented with polygon tobitmaps.Args:mask_ann (list | dict): Polygon mask annotation input.img_h (int): The height of output mask.img_w (int): The width of output mask.Returns:numpy.ndarray: The decode bitmap mask of shape (img_h, img_w)."""if isinstance(mask_ann, list):# polygon -- a single object might consist of multiple parts# we merge all parts into one mask rle coderles = maskUtils.frPyObjects(mask_ann, img_h, img_w)rle = maskUtils.merge(rles)elif isinstance(mask_ann['counts'], list):# uncompressed RLErle = maskUtils.frPyObjects(mask_ann, img_h, img_w)else:# rlerle = mask_annmask = maskUtils.decode(rle)return maskdef construct_det_results(det_json_path):results = dict()bbox_results = dict()scores  = dict()with open(det_json_path) as f:json_data = json.load(f)for info in json_data:img_id = info["image_id"]if img_id not in results:results[img_id] = list()scores[img_id] = list()bbox_results[img_id] = list()bbox = info["bbox"]x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]segm = [[x1, y1, x2, y1, x2, y2, x1, y2]]# mask = _poly2mask(segm, img_h=1544, img_w=2064)score = info["score"]# results[img_id].append([x1, y1, x2, y2, score])results[img_id].append(segm)bbox_results[img_id].append([x1, y1, x2, y2])scores[img_id].append(score)return results, scores, bbox_resultsdef construct_gt_results(gt_json_path):results = dict()bbox_results = dict()cocoGt = COCO(annotation_file=gt_json_path)# cat_ids = cocoGt.getCatIds()img_ids = cocoGt.getImgIds()for id in img_ids:anno_ids = cocoGt.getAnnIds(imgIds=[id])annotations = cocoGt.loadAnns(ids=anno_ids)for info in annotations:img_id = info["image_id"]if img_id not in results:results[img_id] = list()bbox_results[img_id] = list()bbox = info["bbox"]x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]# results[img_id].append([x1, y1, x2, y2])# mask = _poly2mask(info["segmentation"], img_h=1544, img_w=2064)results[img_id].append(info["segmentation"])bbox_results[img_id].append([x1, y1, x2, y2])return results, img_ids, cocoGt, bbox_resultsdef draw_bbox(img_id, cocoGt, det_bboxes, gt_bboxes):path = cocoGt.loadImgs(ids=[img_id])[0]["file_name"]img_path = os.path.join(IMG_ROOT, path)img_data = cv2.imread(img_path)for box in det_bboxes:# color_mask = (0, 0, 255)# color_mask = np.array([0, 0, 255], dtype=np.int8)# bbox_mask = box.astype(np.bool)cv2.rectangle(img_data, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 3)# img_data[bbox_mask] = img_data[bbox_mask] * 0.5 + color_mask * 0.5for box in gt_bboxes:# color_mask = np.array([0, 255, 0], dtype=np.int8)# bbox_mask = box.astype(np.bool)# img_data[bbox_mask] = img_data[bbox_mask] * 0.5 + color_mask * 0.5cv2.rectangle(img_data, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 3)return img_data, pathdef eval_pr(img_id):tp, fp, gt = 0, 0, 0gt_bboxes, gt_ignore = [], []det_bboxes = list()gt_bboxes = list()det_thrs_scores = list()plot_det_bboxes = list()plot_gt_bboxes  = list()if img_id in det_results:# for dt in det_results[img_id]:for idx, score in enumerate(det_scores[img_id]):# score = dt[-1]if score > conf_thrs:mask = _poly2mask(det_results[img_id][idx], img_h=1544, img_w=2064)det_bboxes.append(mask)det_thrs_scores.append(score)plot_det_bboxes.append(det_tmp_bboxes[img_id][idx])if img_id in gt_results:     for segm in gt_results[img_id]:mask = _poly2mask(segm, img_h=1544, img_w=2064)   gt_bboxes.append(mask)plot_gt_bboxes = gt_tmp_bboxes[img_id]det_bboxes = np.array(det_bboxes)gt_bboxes = np.array(gt_bboxes)det_thrs_scores = np.array(det_thrs_scores)gt_ignore = np.array(gt_ignore).reshape(-1, 4)if len(gt_bboxes) > 0:if len(det_bboxes) == 0:tp, fp = 0, 0 else:tp, fp = tpfp_default(det_bboxes, gt_bboxes, gt_ignore, det_thrs_scores, iou_thrs)tp, fp = np.sum(tp == 1), np.sum(fp == 1)gt = len(gt_bboxes)else:fp = len(det_bboxes)if VIS and (fp > 0 or tp < gt):img_data, path = draw_bbox(img_id=img_id, cocoGt=cocoGt, det_bboxes=plot_det_bboxes, gt_bboxes=plot_gt_bboxes)if fp > 0:save_dir = os.path.join(VIS_ROOT, "tmp/FP/")os.makedirs(save_dir, exist_ok=True)cv2.imwrite(os.path.join(save_dir, os.path.basename(path)+".jpg"), img_data, [int(cv2.IMWRITE_JPEG_QUALITY), 30])if tp < gt:save_dir = os.path.join(VIS_ROOT, "tmp/FN/")os.makedirs(save_dir, exist_ok=True)cv2.imwrite(os.path.join(save_dir, os.path.basename(path)+".jpg"), img_data,[int(cv2.IMWRITE_JPEG_QUALITY), 30])return gt, tp, fpdef eval_multiprocessing(img_ids):from multiprocessing import Poolpool = Pool(processes=16)results = pool.map(eval_pr, img_ids)# 关闭进程池,表示不再接受新的任务pool.close()# 等待所有任务完成pool.join()return np.sum(np.array(results), axis=0)if __name__ == '__main__':VIS = 1IMG_ROOT = "gaotie_data"VIS_ROOT = 'badcase-vis-test-2/'conf_thrs = 0.5iou_thrs  = 0.001det_json_path = "results.bbox.json"gt_json_path  = "datasets/gaotie_test_data/annotations/test5_seg_removed.json"det_results, det_scores, det_tmp_bboxes = construct_det_results(det_json_path)gt_results, img_ids, cocoGt, gt_tmp_bboxes  = construct_gt_results(gt_json_path)gt, tp, fp = eval_multiprocessing(img_ids)eps = np.finfo(np.float32).epsrecalls = tp / np.maximum(gt, eps)precisions = tp / np.maximum((tp + fp), eps)print("conf_thrs:{:.3f} iou_thrs:{:.3f}, gt:{:d}, TP={:d}, FP={:d}, P={:.3f}, R={:.3f}".format(conf_thrs, iou_thrs, gt, tp, fp, precisions, recalls))

总结

本文针对目标检测任务中GT存在多边形情况下给出了如下计算数据集的PR结果,基于mask来计算IoU,与语义分割计算IoU的思路一致,最后也给出了所有的实现代码作为参考。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/209987.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java Web 学习之路(2) —— 概念、SpringBoot + MyBatis(controller+service+mapper)开发流程与过程梳理

文章目录 前言1. 常见的一些概念1.1 POJO&#xff08;Plain Ordinary Java Object 简单Java对象&#xff09;1.2 DAO和Mapper 2. Java的三层架构2.1 包的层级结构2.2 交互层 controller&#xff08;用户界面、网页&#xff09;jsp文件2.3 业务处理层 service2.4 Mapper层 3. 注…

如何同步fork项目原仓库的更新

最简单粗暴的方法&#xff1a;把原来fork的仓库删了重新fork&#xff08;嘿嘿不过这显然是不优雅的&#xff09; 那我们该怎么同步更新呢&#xff1f; 如何在 Github 网页端同步更新&#xff1f; 进入你自己的 fork 过来的仓库。点击 “Pull requests” &#xff0c;如何点击…

2024 年甘肃省职业院校技能大赛信息安全管理与评估赛项规程

2024 年甘肃省职业院校技能大赛高职学生组电子与信息大类信息安全管理与评估赛项规程 一、赛项名称 赛项名称&#xff1a;信息安全管理与评估 赛项类别&#xff1a;团体赛 赛项归属&#xff1a;电子与信息大类 二、竞赛目的 极安云科专注技能竞赛&#xff0c;包含网络建设…

Python基础——正则匹配中高阶用法

1.正则使用变量匹配re.escape() re.escape() 是一个用于转义正则表达式中特殊字符的函数。当我们需要使用变量构建正则表达式模式时&#xff0c;为了避免特殊字符对模式的解析产生影响&#xff0c;我们可以使用 re.escape() 函数来自动转义这些特殊字符。 例如&#xff0c;如…

微信小程序css实现的联系客服动画样式

一 、效果 二、代码 wxml <view class"customer-service"><button class"btn" open-type"contact"></button><image class"pic" src"https://ts4.cn.mm.bing.net/th?idOIP-C.3SGSiRPuOU9uH5VNVOMPwgHaHa…

序列的Z变换(信号的频域分析)

1. 关于Z变换 2. 等比级数求和 3. 特殊序列的Z变换 4. 因果序列/系统收敛域的特点 5. 例题

navigationBar顶部导航栏,兼容适配所有机型(附完整案例)

思路 隐藏原生样式获取胶囊按钮、状态栏相关数据以供后续计算根据不同机型计算出该机型的导航栏高度,进行适配编写为导航栏公共组件使用组件1. 隐藏原生样式 全局设置 "window": {"navigationStyle": "custom" }单个页面设置 {"navigat…

免费的AI文案生成器有哪些?AI文案生成器排行榜

在当今数字化的时代&#xff0c;内容创作已成为许多行业不可或缺的一部分。为了满足日益增长的创作需求&#xff0c;越来越多的人开始寻找能够提高效率、同时保持原创性的解决方案。本文将专心分享一些优质的AI文案生成器。 AI文案生成器的需求 内容创作已经不再是传统媒体和市…

高项备考葵花宝典-项目进度管理输入、输出、工具和技术(上,很详细考试必过)

项目进度管理的目标是使项目按时完成。有效的进度管理是项目管理成功的关键之一&#xff0c;进度问题在项目生命周期内引起的冲突最多。 小型项目中&#xff0c;定义活动、排列活动顺序、估算活动持续时间及制定进度模型形成进度计划等过程的联系非常密切&#xff0c;可以视为一…

C语言基础

常量和常量表达式的区别 #define N 4;又是常量&#xff0c;又是常量表达式&#xff0c;其在编译期预处理阶段就会直接替换 const int M 5;只是常量&#xff0c;不是常量表达式 &#xff0c;其是存储在一块内存区域之内的&#xff0c;但是存储的值不能改变 常量表达式&#xff…

【USB、串口、COM口、TTL、RS-232、RS-485区别详解】

USB&#xff0c;串口&#xff0c;COM口&#xff0c;TTL&#xff0c;RS-232&#xff0c;RS-485区别详解 1. USB&#xff0c;串口&#xff0c;COM口&#xff0c;TTL&#xff0c;RS-232&#xff0c;RS-485区别详解2 USB转TTL2 RS-232转TTL3 USB4 UART5 STM32串口异步通讯需要定义的…

iOS——定位与地图

平时在写项目的时候可能会遇到需要使用定位服务的地方&#xff0c;比如说获取位置和导航等。因此这里我会使用OC自带的库以及苹果系统的地图来获取定位以及显示在地图上。 开始前的设置 在获取定位前&#xff0c;需要在项目文件的info中添加两个关键字&#xff0c;用于向用户…

从零开始的C++(二十一)

C11 1.列表初始化&#xff1a; //允许以下代码正确运行int a[]{1,2,3};//效果与int a[]{1,2,3}一致 即允许省略等于号。同时&#xff0c;允许用花括号对所有自定义类型和内置类型进行初始化&#xff0c;而非以前花括号只能对数组进行初始化。利用花括号对自定义类型初始化时…

LeetCode刷题--- 求根节点到叶节点数字之和

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏&#xff1a;http://t.csdnimg.cn/ZxuNL http://t.csdnimg.cn/c9twt 前言&#xff1a;这个专栏主要讲述递归递归、搜索与回溯算法&#xff0c;所以下面题目主要也是这些算法做的 我讲述…

【ITK库学习】使用itk库进行图像滤波ImageFilter:邻域滤波

目录 1、itkMeanImageFilter 均值滤波器2、itkMedianImageFilter 中值滤波器3、itkBinaryMedianImageFilter 二值中值滤波器4、扩展itkNeighborhood5、扩展itkNeighborhoodIterator6、扩展itkNeighborhoodOperator 领域滤波是一种信号处理方法&#xff0c;用于去除信号中的噪声…

★560. 和为 K 的子数组(自己做出来了)

560. 和为 K 的子数组 前缀和的知识。 如果要求i~j下标之间的元素和&#xff0c;用前缀和的话&#xff0c;应该是b[j] - b[i-1]&#xff0c;i处的值也应该包括。 所以这个题&#xff0c;前缀和数组就要比原数组整体向后平移一个单元格&#xff0c;不然在求0~n的和的时候没法取…

在python中安装库,会有conda安装,也会有pip安装,conda与pip的区别是什么?

文章目录 一、Conda是什么&#xff1f;二、pip是什么&#xff1f;三、pip与conda的区别&#xff1a;总结 一、Conda是什么&#xff1f; Conda是一个开源的包管理系统&#xff0c;它是Anaconda公司为Python和其他编程语言开发的。它主要用于数据科学和机器学习领域&#xff0c;…

【Vue】日常错误总结(持续更新)

日常遇到的小问题汇总, 内容小篇幅少的就全放这里了, 内容多的会在Vue专栏单独分享~ 目录 【Q】 el-form-item值为 null 或 undefined显示““ 【Q】dialog内组件数据刷新总是延迟慢一拍 问题背景描述 解决方案 代码简单模拟 JS 【Q】el-input 不能输入的解决办法 方法…

Educational Codeforces Round 156 (Rated for Div. 2)补题

Sum of Three 题目大意&#xff1a;将一个正整数n分成3个不同的正整数x,y,z,保证三个数都不能整除3&#xff0c;如果无法实现就输出NO. 思路&#xff1a;这个题实际上特别简单&#xff0c;我们可以发现当n比较大的时候&#xff0c;我们可以从中取1&#xff0c;然后第二个数也…

【Java】Java环境以及EditPlus编辑器安装与配置流程

要安装和配置Java环境以及EditPlus编辑器&#xff0c;请按照以下步骤操作&#xff1a; ### 安装Java Development Kit (JDK) 1. 访问Java官方网站下载最新版本的JDK。 2. 运行下载的JDK安装程序&#xff0c;并按照提示完成安装。 3. 安装完成后&#xff0c;记下JDK的安装路径&a…