大创项目推荐 交通目标检测-行人车辆检测流量计数 - 大创项目推荐

文章目录

  • 0 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 交通目标检测-行人车辆检测流量计数

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian
Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧中所有的行人,包括位置和大小,一般用矩形框表示,和人脸检测类似,这也是典型的目标检测问题。

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程

import cv2import numpy as npimport randomdef load_images(dirname, amout = 9999):img_list = []file = open(dirname)img_name = file.readline()while img_name != '':  # 文件尾img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')img_list.append(cv2.imread(img_name))img_name = file.readline()amout -= 1if amout <= 0: # 控制读取图片的数量breakreturn img_list# 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本def sample_neg(full_neg_lst, neg_list, size):random.seed(1)width, height = size[1], size[0]for i in range(len(full_neg_lst)):for j in range(10):y = int(random.random() * (len(full_neg_lst[i]) - height))x = int(random.random() * (len(full_neg_lst[i][0]) - width))neg_list.append(full_neg_lst[i][y:y + height, x:x + width])return neg_list# wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsizedef computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):hog = cv2.HOGDescriptor()# hog.winSize = wsizefor i in range(len(img_lst)):if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \(img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)gradient_lst.append(hog.compute(gray))# return gradient_lstdef get_svm_detector(svm):sv = svm.getSupportVectors()rho, _, _ = svm.getDecisionFunction(0)sv = np.transpose(sv)return np.append(sv, [[-rho]], 0)# 主程序# 第一步:计算HOG特征neg_list = []pos_list = []gradient_lst = []labels = []hard_neg_list = []svm = cv2.ml.SVM_create()pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')sample_neg(full_neg_lst, neg_list, [128, 64])print(len(neg_list))computeHOGs(pos_list, gradient_lst)[labels.append(+1) for _ in range(len(pos_list))]computeHOGs(neg_list, gradient_lst)[labels.append(-1) for _ in range(len(neg_list))]# 第二步:训练SVMsvm.setCoef0(0)svm.setCoef0(0.0)svm.setDegree(3)criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)svm.setTermCriteria(criteria)svm.setGamma(0)svm.setKernel(cv2.ml.SVM_LINEAR)svm.setNu(0.5)svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?svm.setC(0.01)  # From paper, soft classifiersvm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression tasksvm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第三步:加入识别错误的样本,进行第二轮训练# 参考 http://masikkk.com/article/SVM-HOG-HardExample/hog = cv2.HOGDescriptor()hard_neg_list.clear()hog.setSVMDetector(get_svm_detector(svm))for i in range(len(full_neg_lst)):rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)for (x,y,w,h) in rects:hardExample = full_neg_lst[i][y:y+h, x:x+w]hard_neg_list.append(cv2.resize(hardExample,(64,128)))computeHOGs(hard_neg_list, gradient_lst)[labels.append(-1) for _ in range(len(hard_neg_list))]svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第四步:保存训练结果hog.setSVMDetector(get_svm_detector(svm))hog.save('myHogDector.bin')

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/208701.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

什么是Nginx反向代理?Nginx反向代理配置指南

Nginx反向代理是一种常见的服务器架构模式&#xff0c;它可以将客户端请求转发到多个后端服务器上&#xff0c;从而实现负载均衡、高可用性和安全性。本文将介绍Nginx反向代理的基本概念和配置方法。 什么是Nginx反向代理&#xff1f; 在传统的Web服务器架构中&#xff0c;客户…

解决selenium使用.get()报错:unknown error: unsupported protocol

解决方法 将原来的&#xff1a; url "https://www.baidu.com" browser.get(url)替换为&#xff1a; url "https://www.baidu.com" browser.execute_script(f"window.location.replace({url});") # 直接平替 .get()问题解析 之前运行都是正…

【后端学前端学习记录】学习计划

1、个人背景 写了足够久的后端了&#xff0c;常用的语言基本上都接触过&#xff0c;没有在工作中写过前端 一直想做一些前端的工作&#xff0c;但是前端技能不足加上自己审美不行&#xff0c;写出的界面总是很丑 所以一直对前端做不好&#xff0c;也没有真正下手。 2、动机 种…

Navicat 技术指引 | 连接 GaussDB 分布式

Navicat Premium&#xff08;16.3.3 Windows 版或以上&#xff09;正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能&#xff0c;还提供强大的高阶功能&#xff08;如模型、结…

SLAM ORB-SLAM2(11)单目初始化

SLAM ORB-SLAM2(11)单目初始化 1. 初始化工作1.1. 单应矩阵(Homography Matrix)1.2. 基础矩阵(Fundamental Matrix)1.3. 本质矩阵(Essential Matrix)1.4. 初始化过程2. 业务流程2.1. 创建单目初始化器2.2. 判断连续帧的特征点数目2.3. 在两帧中找匹配的特征点对2.4. 估…

软件兼容性测试:保障多样化用户体验的重要功能

随着移动设备和操作系统的快速发展&#xff0c;软件兼容性测试变得越发重要。这项测试确保软件在不同平台、设备和环境下都能够正常运行&#xff0c;提供一致而稳定的用户体验。下面是软件兼容性测试中的一些关键功能&#xff1a; 1. 跨平台兼容性测试 在不同操作系统上运行的软…

【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等

Flink 系列文章 一、Flink 专栏 Flink 专栏系统介绍某一知识点&#xff0c;并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分&#xff0c;比如术语、架构、编程模型、编程指南、基本的…

macOS Big Sur/Mac电脑安装vscode显示您没有权限来打开应用程序‘Visual Studio Code‘ 请联系您的电脑或网络管理员问题修复

错误方法 首先我以为我的权限不足。&#xff0c;需要去用户群组里设置。结果根本不是这个的问题。 1.在系统偏好设置->用户与群组检查了一下我的用户是不是管理员 结果发现是管理员 2.根据苹果提示&#xff0c;右键我的文件夹->显示简介->最下面的共享与权限 解锁&…

SAP UI5 walkthrough step5 Controllers

在这个章节&#xff0c;我们要做的是&#xff0c;将之前的text文本展示为一个按钮&#xff0c;并将声明绑定在点击按钮事件。 因为改的是外观&#xff0c;所以我们修改的是view.XML webapp/view/App.view.xml <mvc:ViewcontrollerName"ui5.walkthrough.controller.A…

element中el-select多选v-model是对象数组

文章目录 一、问题二、解决三、最后 一、问题 element中的el-select的v-model一般都是字符串或者字符串数组&#xff0c;但是有些时候后端接口要求该字段要传对象或者对象数组&#xff0c;如果再转换一次数据&#xff0c;对于保存配置和回显都是吃力不讨好的事情。如下所示&am…

SpringBoot 项目将jar 部署在服务器引用外部 配置文件

SpringBoot 官方给出了四种方式引用外部配置文件的方式 在jar包的同一目录下建一个config文件夹&#xff0c;然后把配置文件放到这个文件夹下(最常用)直接把配置文件放到jar包的同级目录在classpath下建一个config文件夹&#xff0c;然后把配置文件放进去在classpath下直接放配…

图片整理

Lily上课时使用字母数字图片教小朋友们学习英语单词&#xff0c;每次都需要把这些图片按照大小&#xff08;ASCII码值从小到大&#xff09;排列收好。请大家给Lily帮忙&#xff0c;通过代码解决。 Lily使用的图片使用字符"A"到"Z"、“a"到"z”、…

centos7做gitlab数据灾备项目地址指向问题

如果你在 CentOS 7 上使用 GitLab 时&#xff0c;它回复的数据指向了另一个服务器的地址&#xff0c;可能是因为配置文件中的一些设置不正确。 要解决这个问题&#xff0c;可以尝试以下几个步骤&#xff1a; 检查 GitLab 配置文件&#xff1a;打开 GitLab 的配置文件&#xf…

python写数据进es中

1、自定义inde为&#xff1a;xxxx&#xff0c;data_to_insert也可以自定义函数 from elasticsearch import Elasticsearch from datetime import datetime, timedelta es Elasticsearch([http://es地址1:9200, es地址2:9200, es地址3:9200]) current_date datetime.now() for…

NTP时钟同步服务器(校时服务器)技术参数分享

NTP时钟同步服务器&#xff08;校时服务器&#xff09;技术参数分享 网络校时服务器是一款先进的智能化高精度时钟同步设备。 网络校时服务器从 GPS、北斗、GLONASS、Galileo等导航定位卫星系统上获取标准时间信息&#xff0c;并通过 NTP/SNTP 或其他网络协议&#xff0c;在网络…

二叉树的层序遍历[中等]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给你二叉树的根节点root&#xff0c;返回其节点值的 层序遍历 。&#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],…

设计模式的定义

1 组合模式: 整体-部分模式,它是一种将对象组合成树状层次结构的模式,用来表示整体和部分的关系,使用户对单个对象和组合对象具有一致的访问性,属于结构型设计模式 1.1 特点: 组合模式使得客户端代码可以一致的处理单个对象和组合对象更容易在组合体内加入新的对象,客户端不…

【数据挖掘】工具整理 - 期刊 - 会议 - 论坛/博客 - 数据集

文章目录 1 期刊2 会议3 论坛/博客4 数据集 1 期刊 Data Mining and Knowledge Discovery (DMKD)IEEE Transactions on Knowledge and Data Engineering (TKDE)Knowledge and Information Systems(KAIS)IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAM…

二叉树的遍历之迭代遍历

前言&#xff1a;在学习二叉树的时候我们基本上已经了解过二叉树的三种遍历&#xff0c;对于这三种遍历&#xff0c;我们采用递归的思路&#xff0c;很简单的就能实现&#xff0c;那么如何用迭代的方法去解决问题&#xff1f; 我们首先来看第一个&#xff1a; 前序遍历 144.…

【计算机网络学习之路】HTTP请求

目录 前言 HTTP请求报文格式 一. 请求行 HTTP请求方法 GET和POST的区别 URL 二. 请求头 常见的Header 常见的额请求体数据类型 三. 请求体 结束语 前言 HTTP是应用层的一个协议。实际我们访问一个网页&#xff0c;都会像该网页的服务器发送HTTP请求&#xff0c;服务…