内网环境安装K8S1.20.11版本集群

目录

第一章.实验要求和环境

1.1.实验要求

1.2.实验环境

1.3.依赖关系处理

第二章.K8S的安装过程

2.1.初始化到集群安装成功

------------------------------ 环境准备 ------------------------------

docker安装好了后

2.2.安装K8组件

-------------------- 部署K8S集群 -------------------- 

//设定kubectl

//所有节点部署网络插件flannel

2.3.安装完成测试


第一章.实验要求和环境

1.1.实验要求

本次安装要求在内网测试环境搭建K8S1.20.11版本的集群。1master,2node

在此基础上安装Kuboard管理集群

1.2.实验环境

系统:centos7.9版本

原始yum本地仓库环境,没有网络,安装包自备。

1.3.依赖关系处理

由于是内网环境,安装包和依赖关系包都通过下载上传到内网环境

依赖包下载,建议用一台干净的同系统版本的虚拟机进行下载,保证依赖包的全部覆盖

在yum后面加--downloadonly --downloaddir=./位置可以下载yum包

yum install ntpdate -y --downloadonly --downloaddir=./bao1                  #时间校准

yum install -y container-selinux.noarch 2:2.119.2-1.911c772.el7_8 libselinux.x86_64 0:2.5-15.el7 libselinux-python.x86_64 0:2.5-15.el7 libselinux-utils.x86_64 0:2.5-15.el7 libsemanage.x86_64 0:2.5-14.el7 libsepol.x86_64 0:2.5-10.el7 policycoreutils.x86_64 0:2.5-34.el7 policycoreutils-python.x86_64 0:2.5-34.el7 selinux-policy.noarch 0:3.13.1-268.el7_9.2 selinux-policy-targeted.noarch 0:3.13.1-268.el7_9.2  setools-libs.x86_64 0:3.3.8-4.el7 --downloadonly --downloaddir=./bao2                           #安装lvm2的前置依赖包

yum install -y yum-utils device-mapper-persistent-data lvm2 --downloadonly --downloaddir=./bao3                                                                         #安装docker前的环境包

yum install -y conntrack-tools.x86_64 0:1.4.4-7.el7 libnetfilter_cthelper.x86_64 0:1.0.0-11.el7 libnetfilter_cttimeout.x86_64 0:1.0.0-7.el7 libnetfilter_queue.x86_64 0:1.0.2-2.el7_2 socat.x86_64 0:1.7.3.2-2.el7 --downloadonly --downloaddir=./bao4           #安装docker前的依赖包

yum install -y docker-ce docker-ce-cli containerd.io --downloadonly --downloaddir=./bao5

#安装docker的包

(你也可以安装指定包yum install docker-ce-19.03.* docker-cli-19.03.* -y)

之后在包的目录里安装本地包

yum -y localinstall *.rpm
# yum -y install *.rpm
 

这里是完全成功的!

第二章.K8S的安装过程

2.1.初始化到集群安装成功

------------------------------ 环境准备 ------------------------------

//所有节点,关闭防火墙规则,关闭selinux,关闭swap交换
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X
swapoff -a                        #交换分区必须要关闭
sed -ri 's/.*swap.*/#&/' /etc/fstab        #永久关闭swap分区,&符号在sed命令中代表上次匹配的结果
#加载 ip_vs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

//修改主机名
hostnamectl set-hostname master01
hostnamectl set-hostname node01
hostnamectl set-hostname node02

//所有节点修改hosts文件
vim /etc/hosts
192.168.247.10 master01
192.168.247.30 node01
192.168.247.40 node02

//调整内核参数
cat > /etc/sysctl.d/kubernetes.conf << EOF
#开启网桥模式,可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables=1
net.bridge.bridge-nf-call-iptables=1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOF

//生效参数
sysctl --system  

docker安装好了后

mkdir /etc/docker
cat > /etc/docker/daemon.json <<EOF
{
  "registry-mirrors": ["https://6ijb8ubo.mirror.aliyuncs.com"],
  "exec-opts": ["native.cgroupdriver=systemd"],
  "log-driver": "json-file",
  "log-opts": {
    "max-size": "100m"
  }
}
EOF
#使用Systemd管理的Cgroup来进行资源控制与管理,因为相对Cgroupfs而言,Systemd限制CPU、内存等资源更加简单和成熟稳定。
#日志使用json-file格式类型存储,大小为100M,保存在/var/log/containers目录下,方便ELK等日志系统收集和管理日志。
 

systemctl daemon-reload
systemctl restart docker.service
systemctl enable docker.service 

docker info | grep "Cgroup Driver"
Cgroup Driver: systemd

2.2.安装K8组件

//定义kubernetes源
cat > /etc/yum.repos.d/kubernetes.repo << EOF
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=0
repo_gpgcheck=0
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF

yum install -y kubelet-1.20.11 kubeadm-1.20.11 kubectl-1.20.11

//开机自启kubelet
systemctl enable kubelet.service
#K8S通过kubeadm安装出来以后都是以Pod方式存在,即底层是以容器方式运行,所以kubelet必须设置开机自启


-------------------- 部署K8S集群 -------------------- 


//查看初始化需要的镜像
kubeadm config images list

//在 master 节点上传 v1.20.11.zip 压缩包至 /opt 目录
unzip v1.20.11.zip -d /opt/k8s
cd /opt/k8s/v1.20.11
for i in $(ls *.tar); do docker load -i $i; done

//复制镜像和脚本到 node 节点,并在 node 节点上执行脚本加载镜像文件
scp -r /opt/k8s root@node01:/opt
scp -r /opt/k8s root@node02:/opt

//初始化kubeadm
方法一:
kubeadm config print init-defaults > /opt/kubeadm-config.yaml

cd /opt/
vim kubeadm-config.yaml
......
11 localAPIEndpoint:
12   advertiseAddress: 192.168.10.19        #指定master节点的IP地址
13   bindPort: 6443
......
34 kubernetesVersion: v1.20.11                #指定kubernetes版本号
35 networking:
36   dnsDomain: cluster.local
37   podSubnet: 10.244.0.0/16                #指定pod网段,10.244.0.0/16用于匹配flannel默认网段
38   serviceSubnet: 10.96.0.0/16            #指定service网段
39 scheduler: {}
#末尾再添加以下内容
--- 
apiVersion: kubeproxy.config.k8s.io/v1alpha1
kind: KubeProxyConfiguration
mode: ipvs                                    #把默认的kube-proxy调度方式改为ipvs模式

kubeadm init --config=kubeadm-config.yaml --upload-certs | tee kubeadm-init.log
#--experimental-upload-certs 参数可以在后续执行加入节点时自动分发证书文件,K8S V1.16版本开始替换为 --upload-certs
#tee kubeadm-init.log 用以输出日志

//查看 kubeadm-init 日志
less kubeadm-init.log


kubeadm join 192.168.247.10:6443 --token abcdef.0123456789abcdef \
    --discovery-token-ca-cert-hash sha256:89d28539b54ef8abc0741641f0be789570c66133591ce784aba46907eda3fe8c 

//kubernetes配置文件目录
ls /etc/kubernetes/

//存放ca等证书和密码的目录
ls /etc/kubernetes/pki        


方法二:
kubeadm init \
--apiserver-advertise-address=192.168.10.19 \
--image-repository registry.aliyuncs.com/google_containers \
--kubernetes-version=v1.20.11 \
--service-cidr=10.96.0.0/16 \
--pod-network-cidr=10.244.0.0/16 \
--token-ttl=0
--------------------------------------------------------------------------------------------
初始化集群需使用kubeadm init命令,可以指定具体参数初始化,也可以指定配置文件初始化。
可选参数:
--apiserver-advertise-address:apiserver通告给其他组件的IP地址,一般应该为Master节点的用于集群内部通信的IP地址,0.0.0.0表示节点上所有可用地址
--apiserver-bind-port:apiserver的监听端口,默认是6443
--cert-dir:通讯的ssl证书文件,默认/etc/kubernetes/pki
--control-plane-endpoint:控制台平面的共享终端,可以是负载均衡的ip地址或者dns域名,高可用集群时需要添加
--image-repository:拉取镜像的镜像仓库,默认是k8s.gcr.io
--kubernetes-version:指定kubernetes版本
--pod-network-cidr:pod资源的网段,需与pod网络插件的值设置一致。Flannel网络插件的默认为10.244.0.0/16,Calico插件的默认值为192.168.0.0/16;
--service-cidr:service资源的网段
--service-dns-domain:service全域名的后缀,默认是cluster.local
--token-ttl:默认token的有效期为24小时,如果不想过期,可以加上 --token-ttl=0 这个参数
---------------------------------------------------------------------------------------------

方法二初始化后需要修改 kube-proxy 的 configmap,开启 ipvs
kubectl edit cm kube-proxy -n=kube-system
修改mode: ipvs

提示:
......
Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run:

  export KUBECONFIG=/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
  https://kubernetes.io/docs/concepts/cluster-administration/addons/

Then you can join any number of worker nodes by running the following on each as root:
//node01、node02访问
kubeadm join 192.168.247.10:6443 --token wfjo7j.baa0aheyw39w3m7h \
    --discovery-token-ca-cert-hash sha256:77100ff66b20100cbd9f1c289788e43aee69c5b4e24cc2c74c2e5d634a074fdc 


//设定kubectl


kubectl需经由API server认证及授权后方能执行相应的管理操作,kubeadm 部署的集群为其生成了一个具有管理员权限的认证配置文件 /etc/kubernetes/admin.conf,它可由 kubectl 通过默认的 “$HOME/.kube/config” 的路径进行加载。

mkdir -p $HOME/.kube
cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
chown $(id -u):$(id -g) $HOME/.kube/config


kubectl get cs
//如果 kubectl get cs 发现集群不健康,更改以下两个文件
vim /etc/kubernetes/manifests/kube-scheduler.yaml 
vim /etc/kubernetes/manifests/kube-controller-manager.yaml
# 修改如下内容
把--bind-address=127.0.0.1变 成--bind-address=192.168.10.19        #修改成k8s的控制节点master01的ip
把httpGet:字段下的hosts由127.0.0.1变成192.168.10.19(有两处)
#- --port=0                    # 搜索port=0,把这一行注释掉

systemctl restart kubelet


//所有节点部署网络插件flannel

新方法:

//上传cni-plugins-linux-amd64-v1.2.0.tgz、flannel-cni-v1.2.0.tar、flannel-v0.22.2.tar和kube-flannel.yml

master01上操作:
docker load -i flannel-v0.22.2.tar
docker load -i flannel-cni-v1.2.0.tar
scp flannel-cni-v1.2.0.tar flannel-v0.22.2.tar node01:/opt  #复制到node1节点
scp flannel-cni-v1.2.0.tar flannel-v0.22.2.tar node02:/opt  #复制到node2节点

node01/node02上操作:
docker load -i flannel-v0.22.2.tar
docker load -i flannel-cni-v1.2.0.tar

master01操作:
kubectl apply -f kube-flannel.yml
kubectl get pod -n kube-system

###如若显示下述问题,重启所以节点的docker和kubelet服务
[root@master01 opt]# kubectl get pod -n kube-system
NAME                               READY   STATUS    RESTARTS   AGE
coredns-74ff55c5b-56mhk            0/1     Pending   0          105m
coredns-74ff55c5b-sndb7            0/1     Pending   0          105m
etcd-master01                      1/1     Running   0          105m
kube-apiserver-master01            1/1     Running   0          105m
kube-controller-manager-master01   1/1     Running   0          102m
kube-proxy-gxn5d                   1/1     Running   0          105m
kube-scheduler-master01            1/1     Running   0          103m
 

方法一:
//所有节点上传flannel镜像 flannel.tar 到 /opt 目录,master节点上传 kube-flannel.yml 文件
cd /opt
docker load < flannel.tar

//在 master 节点创建 flannel 资源
kubectl apply -f kube-flannel.yml 


方法二:
kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

kubectl apply -f https://github.com/flannel-io/flannel/releases/latest/download/kube-flannel.yml


//在 node 节点上执行 kubeadm join 命令加入群集
kubeadm join 192.168.247.10:6443 --token rc0kfs.a1sfe3gl4dvopck5 \
    --discovery-token-ca-cert-hash sha256:864fe553c812df2af262b406b707db68b0fd450dc08b34efb73dd5a4771d37a2


kubeadm join 192.168.247.10:6443 --token abcdef.0123456789abcdef \
    --discovery-token-ca-cert-hash sha256:89d28539b54ef8abc0741641f0be789570c66133591ce784aba46907eda3fe8c 


//在master节点查看节点状态
kubectl get nodes

kubectl get pods -n kube-system
NAME                             READY   STATUS    RESTARTS   AGE
coredns-bccdc95cf-c9w6l          1/1     Running   0          71m
coredns-bccdc95cf-nql5j          1/1     Running   0          71m
etcd-master                      1/1     Running   0          71m
kube-apiserver-master            1/1     Running   0          70m
kube-controller-manager-master   1/1     Running   0          70m
kube-flannel-ds-amd64-kfhwf      1/1     Running   0          2m53s
kube-flannel-ds-amd64-qkdfh      1/1     Running   0          46m
kube-flannel-ds-amd64-vffxv      1/1     Running   0          2m56s
kube-proxy-558p8                 1/1     Running   0          2m53s
kube-proxy-nwd7g                 1/1     Running   0          2m56s
kube-proxy-qpz8t                 1/1     Running   0          71m
kube-scheduler-master            1/1     Running   0          70m
 

2.3.安装完成测试

//测试 pod 资源创建
kubectl create deployment nginx --image=nginx

kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES
nginx-554b9c67f9-zr2xs   1/1     Running   0          14m   10.244.1.2   node01   <none>           <none>

//暴露端口提供服务
kubectl expose deployment nginx --port=80 --type=NodePort

kubectl get svc
NAME         TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE
kubernetes   ClusterIP   10.96.0.1      <none>        443/TCP        3h57m
myapp-ky20   NodePort    10.96.56.120   <none>        80:32404/TCP   3s


//测试访问
curl http://node01:32404

//扩展3个副本
kubectl scale deployment nginx --replicas=3
kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES
nginx-554b9c67f9-9kh4s   1/1     Running   0          66s   10.244.1.3   node01   <none>           <none>
nginx-554b9c67f9-rv77q   1/1     Running   0          66s   10.244.2.2   node02   <none>           <none>
nginx-554b9c67f9-zr2xs   1/1     Running   0          17m   10.244.1.2   node01   <none>           <none>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/197887.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1-Hadoop原理与技术

单选题 题目1&#xff1a;安装Hadoop集群时&#xff0c;是在哪个文件指定哪些机器作为集群的从机&#xff1f; 选项: A datanode B slaves C yarn-site.xml D core-site.xml 答案&#xff1a;B ------------------------------ 题目2&#xff1a;Hadoop配置文件所在目录是哪…

计算机基础知识64

ForeignKey属性 to&#xff1a;设置要关联的表 related_name&#xff1a; 反向操作时&#xff0c;使用的字段名&#xff0c;用于代替原反向查询时的’表名_set’ related_query_name:反向查询操作时&#xff0c;使用的连接前缀&#xff0c;用于替换表名 to_field:设置要关联的表…

最长连续序列(leetcode 128)

文章目录 1.问题描述2.难度等级3.热门指数4.解题思路方法一&#xff1a;排序方法二&#xff1a;哈希表 5.实现示例参考文献 1.问题描述 给定一个未排序的整数数组 nums &#xff0c;找出数字连续的最长序列&#xff08;不要求序列元素在原数组中连续&#xff09;的长度。 请你…

【华为OD题库-049】评论转换输出-java

题目 在一个博客网站上&#xff0c;每篇博客都有评论。每一条评论都是一个非空英文字母字符串。评论具有树状结构&#xff0c;除了根评论外&#xff0c;每个评论都有一个父评论。 当评论保存时&#xff0c;使用以下格式: 首先是评论的内容; 然后是回复当前评论的数量。 最后是当…

如何保持操纵机构丝杆的精度?

滚珠丝杆是操纵机构中的重要组成部分&#xff0c;可以传递较高的扭矩&#xff0c;并且具有低摩擦、高效率和快速响应的特性&#xff0c;这使得操纵机构能够实现高速、高精度的运动控制&#xff0c;这对于整个系统的性能和精度具有决定性的影响&#xff0c;保持操纵机构丝杆的精…

互联网Java工程师面试题·Spring Boot篇·第二弹

目录 8、什么是 YAML&#xff1f; 9、如何实现 Spring Boot 应用程序的安全性&#xff1f; 10、如何集成 Spring Boot 和 ActiveMQ&#xff1f; 11、如何使用 Spring Boot 实现分页和排序&#xff1f; 12、什么是 Swagger&#xff1f;你用 Spring Boot 实现了它吗&#xff1f; …

YoloV5改进策略:Swift Parameter-free Attention,无参注意力机制,超分模型的完美迁移

摘要 https://arxiv.org/pdf/2311.12770.pdf https://github.com/hongyuanyu/SPAN SPAN是一种超分网络模型。SPAN模型通过使用参数自由的注意力机制来提高SISR的性能。这种注意力机制能够增强重要信息并减少冗余,从而在图像超分辨率过程中提高图像质量。 具体来说,SPAN模…

MATLAB 系统辨识 - 在线估计 - Online Estimation

系列文章目录 MATLAB 模型参考自适应控制 - Model Reference Adaptive Control MATLAB 自抗扰控制 - Active Disturbance Rejection Control 文章目录 系列文章目录前言一、在线参数估计二、使用步骤 前言 在线估计&#xff08;Online estimation&#xff09;算法是在物理系…

C语言枚举

枚举的定义 定义&#xff1a; C语言提供了一种枚举&#xff08;enum&#xff09;类型&#xff0c;能够列出所有可能的取值&#xff0c;并给它们取一个单独的名称使用该类型可以定义枚举类型的变量&#xff0c;一个枚举类型变量可以包含一组相关的标识符&#xff0c;其中每个标…

【wvp】测试记录

ffmpeg 这是个莫名其妙的报错&#xff0c;通过排查&#xff0c;应该是zlm哪个进程引起的 会议室的性能 网络IO也就20M

全志T527设置gpio口输出高电平实际输出低电平

前言 在调试T527的时候&#xff0c;主板另外添加了gpio口去控制usb口的电源开关&#xff0c;软件上面需要在内核运行的时候将gpio口设置输出高电平&#xff0c;usb口才可以正常使用。改好系统固件后&#xff0c;升级发现&#xff0c;机器开机动画过程中可以控制gpio口去打开us…

ArkUI组件--Button组件

1.声明Button组件 Button(label?:ResourceStr) #label是按钮上显示的文本 ①label是文字类型 所写文字会在按钮上显示 ②不输入label内容&#xff0c;需要额外定义一些描述。例如插入图片&#xff08;需要定义图片属性&#xff09; Button(){Image($r(app.media.xxx)).wi…

解决Flutter报错boxconstraints has non-normalized height/width constraints

出错场景 如果我们在使用约束时没有正确的传入宽高&#xff0c;比如以下代码 ConstrainedBox(/// 设置最小高度为150, 最大高度为100.constraints: BoxConstraints(minHeight: 150,maxHeight: 100),child: Container(color: Colors.red,child: Center(child: Text(呵呵),),),…

54.螺旋矩阵(顺时针打印矩形元素)

题目 class Solution {public List<Integer> spiralOrder(int[][] matrix) {int m matrix.length, n matrix[0].length;int leftUpM 0, leftUpN 0, rightDownM m - 1, rightDownN n - 1;List<Integer> res new ArrayList<>();while (leftUpM < ri…

【题目】栈和队列专题

文章目录 专题一&#xff1a;栈系列1. 中缀表达式转后缀表达式&#xff08;逆波兰式&#xff09;2. 有效的括号3. 用栈实现队列4. 最小栈 专题一&#xff1a;栈系列 1. 中缀表达式转后缀表达式&#xff08;逆波兰式&#xff09; 算法原理 2. 有效的括号 题目链接 算法原理 代…

SpringBoot-监听Nacos动态修改日志级别

目录 一、pom文件 二、项目配置文件 三、日志配置文件 四、日志监听类 五、日志动态修改服务类 线上系统的日志级别一般都是 INFO 级别&#xff0c;有时候需要查看 WARN 级别的日志&#xff0c;所以需要动态修改日志级别。微服务项目中使用 Nacos 作为注册中心&#xff0c…

C++面试宝典第2题:逆序输出整数

题目 写一个方法&#xff0c;将一个整数逆序打印输出到控制台。注意&#xff1a;当输入的数字含有结尾的0时&#xff0c;输出不应带有前导的0。比如&#xff1a;123的逆序输出为321&#xff0c;8600的逆序输出为68&#xff0c;-609的逆序输出为-906。 解析 这道题本身并没有什么…

Java架构师技术架构路线

目录 1 概论2 如何规划短中长期的技术架构路线图3 如何规划面向未来的架构4 如何修订路线图执行过程中的偏差5 如何落地路线图-阿里系糙快猛之下的敏捷模式想学习架构师构建流程请跳转:Java架构师系统架构设计 1 概论 首先,规划一个短中长期的技术路线图是非常重要的。短中…

java SSM毕业生信息管理myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

前言 学校的规模不断扩大&#xff0c;学生数量急剧增加&#xff0c;有关学生的各种信息量也成倍增长。面对庞大的信息量需要有学生信息管理系统来提高学生管理工作的效率。通过这样的系统可以做到信息的规范管理、科学统计和快速查询、修改、增加、删除等&#xff0c;从而减少管…

lv11 嵌入式开发 RTC 17

目录 1 RTC简介 ​编辑2 Exynos4412下的RTC控制器 2.1 概述 2.2 特征 2.3 功能框图 3 寄存器介绍 3.1 概述 3.2 BCD格式的年月日寄存器 3.3 INTP中断挂起寄存器 3.4 RTCCON控制寄存器 3.5 CURTICCNT 作为嘀嗒定时器使用的寄存器 4 RTC编程 5 练习 1 RTC简介 RTC(…