智能优化算法应用:基于乌鸦算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于乌鸦算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于乌鸦算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.乌鸦算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用乌鸦算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.乌鸦算法

乌鸦算法原理请参考:https://blog.csdn.net/u011835903/article/details/108800505
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

乌鸦算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明乌鸦算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/187923.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据(十一):概率统计基础

专栏介绍 结合自身经验和内部资料总结的Python教程,每天3-5章,最短1个月就能全方位的完成Python的学习并进行实战开发,学完了定能成为大佬!加油吧!卷起来! 全部文章请访问专栏:《Python全栈教程(0基础)》 再推荐一下最近热更的:《大厂测试高频面试题详解》 该专栏对…

ruoyi+Hadoop+hbase实现大数据存储查询

前言 有个现实的需求,数据量可能在100亿条左右。现有的数据库是SQL Server,随着采集的数据不断的填充,查询的效率越来越慢(现有的SQL Server查询已经需要数十秒钟的时间),看看有没有优化的方案。 考虑过S…

HTML——表单详解

表单元素 一、表单的用途 HTML 表单用于收集用户的输入信息。 HTML 表单表示文档中的一个区域,此区域包含交互控件,将用户收集到的信息发送到 Web 服务器。 一个表单有三个基本组成部分: 表单标签:这包含了处理表单数据所用的…

成都理工大学校园《我想假如在这里度过大学生活》火了

近日,网上一篇关于成都理工大学校园环境的《我想假如在这里度过大学生活》火了。文章中的提到的大学环境优美,诗意盎然。一则则假如,带我们领略了校园风光,同时也感受到了大学时代的美好。 美丽的图书馆、阳光明媚的操场&#xff…

微服务设计模式

微服务可以对您的企业产生积极影响。因此,有必要了解如何处理微服务架构(MSA)和一些微服务设计模式,以及微服务架构的一般目标或原则。以下是微服务架构方法中需要考虑的四个目标 [1]。 降低成本: MSA 将降低设计、实…

jvm-垃圾收集器

serial serial old ParNew CMS parallel scavanbe parallel old g1 串行收集器组合 Serial Serial Old 开启选项:-XX:SerialGC 串行收集器是最基本、发展时间最长、久经考验的垃圾收集器,也是client模式下的默认收集器配置。 串行收集器采用单线程stop…

训练 CNN 对 CIFAR-10 数据中的图像进行分类-keras实现

1. 加载 CIFAR-10 数据库 import keras from keras.datasets import cifar10# 加载预先处理的训练数据和测试数据 (x_train, y_train), (x_test, y_test) cifar10.load_data() 2. 可视化前 24 个训练图像 import numpy as np import matplotlib.pyplot as plt %matplotlib …

csapp-linklab之第4阶段“输出学号”实验报告(switch跳转表)

实验内容 修改phase4.o相应节中的内容,使其与main.o链接后运行能够输出自己的学号: $ gcc -o linkbomb main.o phase4.o $ ./linkbomb $学号 实验提示 掌握switch语句的机器语言表示及其跳转表的实现。 找出跳转表 反汇编phase4.o,看看里…

分治法之二分查找

思路: 确定查找范围:开始时,将整个有序数组作为查找范围。比较中间元素:计算查找范围的中间元素的索引 mid,并将其与目标值进行比较。 如果中间元素等于目标值,则查找成功,返回中间元素的索引。如果中间元素…

el-table实现动态表头

1.1el-table渲染 <el-tableref"refreshTable":data"tableData"highlight-current-row><el-table-columnfixedwidth"170px"label"测点"align"center"prop"测站名称"/><el-table-column label"…

Android 横竖屏切换 窗口全屏

Android 横竖屏切换 窗口全屏 窗口设置为全屏 废话不多说直接上代码 首先在AndroidManifest的Activity下设置screenOrientation和configChanges - android:configChanges"orientation|screenSize"- android:screenOrientation"fullSensor"一个是设置屏幕取…

SpringBoot入门教程

Spring Boot 是由Spring框架团队推出的一款用来简化Spring应用程序创建和开发过程的框架&#xff0c;它基于Spring框架&#xff0c;使用约定优于配置&#xff0c;大大简化了Spring应用程序的配置和开发过程。在很多企业中&#xff0c;Spring Boot 已经被广泛应用&#xff0c;成…

浅谈安科瑞可编程电测仪表在老挝某项目的应用

摘要&#xff1a;本文介绍了安科瑞多功能电能表在老挝某项目的应用。AMC系列交流多功能仪表是一款专门为电力系统、工矿企业、公用事业和智能建筑用于电力监控而设计的智能电表。 Abstract&#xff1a;This article introduces the application of the multi-function energy …

Arrays.asList(T... a)导致的事故

&#x1f4da;项目场景: 修改数据时&#xff0c;允许将非必填字段清空。 ⛔问题描述: 由于使用的是Mybatis-Plus&#xff0c;只能使用LambdaUpdateWrapper或UpdateWrapper通过set(column,val)来将字段清空&#xff1b;因为字段太多导致大量set放在一个方法&#xff0c;不符合…

深度学习今年来经典模型优缺点总结,包括卷积、循环卷积、Transformer、LSTM、GANs等

文章目录 1、卷积神经网络&#xff08;Convolutional Neural Networks&#xff0c;CNN&#xff09;1.1 优点1.2 缺点1.3 应用场景1.4 网络图 2、循环神经网络&#xff08;Recurrent Neural Networks&#xff0c;RNNs&#xff09;2.1 优点2.2 缺点2.3 应用场景2.4 网络图 3、长短…

L1-010:比较大小

题目描述 本题要求将输入的任意3个整数从小到大输出。 输入格式: 输入在一行中给出3个整数&#xff0c;其间以空格分隔。 输出格式: 在一行中将3个整数从小到大输出&#xff0c;其间以“->”相连。 输入样例: 4 2 8输出样例: 2->4->8 程序代码 #include<stdio.h&…

基于YOLOv8深度学习的安全帽目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

Git——使用Git进行程序开发

主要介绍个人开发提交记录的主要流程&#xff0c;包括以下内容&#xff1a; 索引- 提交的暂存区。查看工作的状态和内部变更。如何读取用于描述变更的已扩展统一diff格式。支持查询和交互的提交&#xff0c;修改提交。创建、显示和选择&#xff08;切换&#xff09;分支。切换…

面试:如何故意减慢网站速度?

面试问题&#xff1a;假设你为你的客户建立了一个网站。但他没有定期支付费用。现在你想放慢他的网站速度&#xff0c;但又不想让他立即发现。你会怎么做&#xff1f; 我&#xff1a;用较慢的算法和其他与编码相关的选项替换代码中使用的算法。 面试问题&#xff1a;问在这种情…

婴儿专用洗衣机有必要买吗?宝宝洗衣机洗衣服

我们都知道刚出生的宝宝抵抗力较弱&#xff0c;很容易因为细菌感染然后生病&#xff0c;宝宝接触最多的就是衣服&#xff0c;我们在手洗的过程很难把衣服上的细菌清洗掉&#xff0c;而使用我们传统的洗衣机很容易造成细菌的第二次感染&#xff0c;很容易将宝宝的抵抗力弄得越来…