AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解


本文使用工具,作者:秋葉aaaki


免责声明:
工具免费提供 无任何盈利目的


大家好,我是风雨无阻。

今天为大家带来的是 AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解。


目前,AI 绘画Stable Diffusion的各种模型层出不穷,这些模型都有什么作用?又该怎么安装使用?对于新手朋友来说,是非常大的困扰。


这篇文章将会为你介绍AI 绘画Stable Diffusion的模型种类、模型的安装及使用方法、以及模型的选择和下载。


不同的模型有不同的画风如:线条风格、手绘风格、立体风格、科幻风格、真人风格。

还有不同的概念,例如:人物、物体、动作等。

这些都是目前Stable Diffusion 模型众多的原因。

那么,Stable Diffusion的模型具体有哪些种类呢,都有什么作用呢?


一、Stable Diffusion的模型详解

1、模型种类

当前,常见的模型可以分为两大类

  • 大模型:这里的大模型特指标准的 latent-diffusion 模型,拥有完整的 TextEncoder、U-Net、VAE。

  • 微调大模型的小模型


由于想要炼制、微调大模型非常的困难,需要比较好的显卡、比较高的算力, 因此更多的选择是去炼制小型模型。


这些小型模型通过作用在大模型的不同部分,来修改大模型,从而达到目的。


常见的用于微调大模型的小模型又分为以下几种:

  • Textual inversion (Embedding模型)
  • Hypernetwork模型
  • LoRA模型

还有一种叫做 VAE (VAE, Variational autoencoder,变分自编码器,负责将潜空间的数据转换为正常图像)的模型,通常来讲 VAE 可以看做是类似滤镜一样的东西,会影响出图的画面的色彩和某些极其微小的细节。


如图:

在这里插入图片描述


其实大模型本身就自带 VAE 的,但是一些融合模型的 VAE坏了 (例如:Anything-v3),有时画面发灰就是因为这个原因。所以需要外置 VAE 的覆盖来补救。


由于模型的种类不同、作用位置也不同,所以想要使用这些模型必须分清这些模型类别,并且正确的使用,模型才会生效。


2、模型的区分方法


如何区分这些模型对新手来说是一件非常困难的事情,因为他们都可以拥有一样的后缀名。


这里感谢 秋葉aaaki 提供的模型种类检测工具 ,在本地将模型文件拖入即可识别。


3、模型后缀名详解


目前,常见的 AI绘画标准模型后缀名有如下几种:

  • ckpt

  • pt

  • pth

    这三种是 pytorch(深度学习框架)的标准模型格式,由于使用了 Pickle,会有一定的安全风险 。


  • safetensors:新型的模型格式 。正如同名字:safe,为了解决前面几种模型的安全风险而出现的,safetensors 格式与 pytorch 的模型可以通过工具进行任意转换,只是保存数据的方式不同,内容数据没有任何区别。


注意:safetensors模型需要 webui 更新到2022年12月底以后的版本才能用。


4、常见模型安装及使用方法


(1)、大模型安装及使用

大模型,常见格式为 ckpt,顾名思义,就是大。大小在GB级别,常见有 2G、4G、7G模型,模型大小不代表模型质量。


安装方法:放在Stable-diffusion文件夹内。

\sd-webui-aki-v4.2\models\Stable-diffusion

如图:

在这里插入图片描述

使用方法:


第一步,在 webui 左上角选择对应的模型


在这里插入图片描述


第二步,手动选择vae并应用保存


前面也说到,部分合并出来的大模型VAE烂了,画面会发灰,因此需要去设置中手动选择vae并应用保存。


在这里插入图片描述


(2)、Embedding (Textual inversion)模型安装及使用


embedding 模型,常见格式为 pt、png图片、webp图片,大小一般在 KB 级别。


例如:

在这里插入图片描述


安装方法

放在 embeddings 这个文件夹里面

\sd-webui-aki-v4.2\embeddings

使用方法:

生成图片的时候需要带上文件名作为 tag。

例如,上面这张图里面的 shiratama_at_2-3000.pt 这个模型,使用的时候就需要带上这个tag:shiratama_at_2-3000


(3)、Hypernetwork安装及使用


常见格式为 pt,大小一般在几十兆到几百兆不等,由于这种模型可以自定义的参数非常多,也有的 Hypernetwork 模型可以达到 GB 级别。


例如:

在这里插入图片描述


安装方法:放在hypernetworks 文件夹内。

\sd-webui-aki-v4.2\models\hypernetworks

在这里插入图片描述


使用方法:

第一步,点击生成下方的第三个按钮

第二步,选择hypernetworks 标签页


如图所示

在这里插入图片描述


(4)、LoRA模型安装及使用


常见格式为 pt、ckpt,大小一般在8mb~144mb不等。


安装方法:模型需要放在 Lora 文件夹。

\sd-webui-aki-v4.2\models\Lora

在这里插入图片描述


使用方法:

第一步,点击生成下方的第三个按钮

第二步,选择Lora 标签页


如图:

在这里插入图片描述


第三步,点击一个模型以后会向提示词列表添加类似这么一个tag, 也可以直接用这个tag调用lora模型。

<lora:模型名:权重> 

在这里插入图片描述


(5)、VAE 模型安装及使用


常见格式为 .pt ,如图:

在这里插入图片描述


安装方法:模型需要放在 VAE 文件夹。

\sd-webui-aki-v4.2\models\VAE

模型放置完毕后,在设置页面进行如下设置,并重启。


在这里插入图片描述


如果没有sd_vae 选项,则需要补充上。

添加在 sd_model_checkpoint 之后,语法如下:

,sd_vae

在这里插入图片描述


好,由于篇幅原因,模型的安装和使用就介绍到这里。


大家都知道,要用Stable Diffusion画出漂亮的图片,首先得选好模型。


目前,模型数量最多的两个网站是civitai 和huggingface。

civitai又称c站,有非常多精彩纷呈的模型,有了这些模型,我们分分钟就可以变成绘画大师,用AI画出各种我们想要的效果。

我们这里就以 civitai 站下载模型进行安装为例,进行详细说明。


二、模型的下载及选择方法


在这里插入图片描述


1、直接搜索想要的模型

最上面是搜索框,我们可以直接通过关键词来搜索想要的模型。


在这里插入图片描述


在这里插入图片描述


2、按照菜单分类选择模型

点击左上角菜单,可以看到这里是按照 以下几项来分类的:

  • 最高评价HIGHEST RATED
  • 最多下载MOST DOWNLOADED
  • 点赞最多MOST LIKED
  • 讨论最多MOST DISCuSSED
  • 最新上传NEWEST。

在这里插入图片描述


3、按照时间排序来选模型


点击右上角,可以按照时间排序来选模型:最近一周、最近一月、所有时间的。


在这里插入图片描述


4、按照模型类型、Stable Diffusion版本选择模型


在这里插入图片描述


Stable Diffusion目前有SD 1.4、SD 1.5、SD 2.0、SD 2.0 768、SD 2.1、SD 2.1768、SD 2.1 Unclip 等版本。


注意:

  • 通常来说版本越高,效果越好。

  • 目前比较流行的还是1.5版本,1.5之前的版本没啥限制,可以自由出各种图片。

  • 2.0以上版本提供了一个 图像无损放大模型:Upscaler Diffusion ,可以将生成图像的分辨率提高 4 倍,适合出高清大图。2.0加入了一些限制,不能出一些不可描述的图片。


所以,具体使用哪个版本,还是要根据自己的需求来选择。


挑到喜欢的模型后,怎么安装模型呢?


三、模型的下载安装实操


接下来我们来说明一下安装实操步骤。


1、下载模型文件,在c站 搜搜到喜欢的模型,并下载


在这里插入图片描述

2、下载成功后,我们会获得模型文件


在这里插入图片描述


3、将模型文件使用模型种类检测工具 获取模型的种类


如图:

在这里插入图片描述


将模型文件拖入该工具后,会获得以下信息:

文件名
dunhuangV3.safetensors文件大小
144.11 MB模型种类
LoRA 模型模型用法
放入 models/Lora 文件夹后,在 webui 中,“生成” 按钮的下方选择 🎴 按钮,找到 Lora 选项卡点击使用。Info
{
ss_batch_size_per_device:"6"
ss_bucket_info:{}
ss_bucket_no_upscale:"True"
ss_cache_latents:"True"
ss_caption_dropout_every_n_epochs:"0"
ss_caption_dropout_rate:"0.0"
ss_caption_tag_dropout_rate:"0.0"
ss_clip_skip:"None"
ss_color_aug:"False"
ss_dataset_dirs:{}
ss_enable_bucket:"True"
ss_epoch:"10"
ss_face_crop_aug_range:"None"
ss_flip_aug:"False"
ss_full_fp16:"False"
ss_gradient_accumulation_steps:"1"
ss_gradient_checkpointing:"False"
ss_keep_tokens:"0"
ss_learning_rate:"0.0001"
ss_lowram:"False"
ss_lr_scheduler:"cosine_with_restarts"
ss_lr_warmup_steps:"0"
ss_max_bucket_reso:"1024"
ss_max_grad_norm:"1.0"
ss_max_token_length:"None"
ss_max_train_steps:"6750"
ss_min_bucket_reso:"256"
ss_min_snr_gamma:"None"
ss_mixed_precision:"fp16"
ss_network_alpha:"64.0"
ss_network_dim:"128"
ss_network_module:"networks.lora"
ss_new_sd_model_hash:"e4a30e4607faeb06b5d590b2ed8e092690c631da0b2becb6224d4bb5327104b7"
ss_noise_offset:"None"
ss_num_batches_per_epoch:"675"
ss_num_epochs:"10"
ss_num_reg_images:"0"
ss_num_train_images:"4050"
ss_optimizer:"bitsandbytes.optim.adamw.AdamW8bit"
ss_output_name:"dunhuang_20230625021029"
ss_prior_loss_weight:"1.0"
ss_random_crop:"False"
ss_reg_dataset_dirs:"{}"
ss_resolution:"(512, 768)"
ss_sd_model_hash:"1d5a534e"
ss_sd_model_name:"majicmix_realv6_fp16.safetensors"
ss_sd_scripts_commit_hash:"(unknown)"
ss_seed:"2361018997"
ss_session_id:"801586992"
ss_shuffle_caption:"False"
ss_tag_frequency:{}
ss_text_encoder_lr:"1e-05"
ss_total_batch_size:"6"
ss_training_comment:"None"
ss_training_finished_at:"1687645290.3126323"
ss_training_started_at:"1687630234.599286"
ss_unet_lr:"0.0001"
ss_v2:"False"
sshs_legacy_hash:"14dab82f"
sshs_model_hash:"f747a8b2ab9a85d407f26183afb59d53fc023c2fbde928fe8512721fda5a11aa"
}

根据工具输出信息可知, dunhuangV3.safetensors 模型的模型种类是LoRA 模型。


4 、将模型dunhuangV3.safetensors 放入 models/Lora 文件夹。

5、在 webui 中,“生成” 按钮的下方选择 🎴 按钮,找到 Lora 选项卡点击使用。

好,今天的内容就到此结束,我们来总结一下。

今天主要给大家分享了 Stable Diffusion的模型种类说明,以及常见模型的下载、安装、使用方法, 没理解到的朋友,请收藏起来多看几遍。

关注我,后续继续分享sd更多干货 , 敬请期待。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18524.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css3 hover border 流动效果

/* Hover 边线流动 */.hoverDrawLine {border: 0 !important;position: relative;border-radius: 5px;--border-color: #60daaa; } .hoverDrawLine::before, .hoverDrawLine::after {box-sizing: border-box;content: ;position: absolute;border: 2px solid transparent;borde…

生成对抗网络DCGAN学习实践

在AI内容生成领域&#xff0c;有三种常见的AI模型技术&#xff1a;GAN、VAE、Diffusion。其中&#xff0c;Diffusion是较新的技术&#xff0c;相关资料较为稀缺。VAE通常更多用于压缩任务&#xff0c;而GAN由于其问世较早&#xff0c;相关的开源项目和科普文章也更加全面&#…

【机器学习】Gradient Descent

Gradient Descent for Linear Regression 1、梯度下降2、梯度下降算法的实现(1) 计算梯度(2) 梯度下降(3) 梯度下降的cost与迭代次数(4) 预测 3、绘图4、学习率 首先导入所需的库&#xff1a; import math, copy import numpy as np import matplotlib.pyplot as plt plt.styl…

Devops系统中jira平台迁移

需求:把aws中的devops系统迁移到华为云中,其中主要是jira系统中的数据迁移,主要方法为在华为云中建立一套 与aws相同的devops平台,再把数据库和文件系统中的数据迁移,最后进行测试。 主要涉及到的服务集群CCE、数据库mysql、弹性文件服务SFS、数据复制DRS、弹性负载均衡ELB。 迁…

问道管理:补仓什么意思?怎么补仓可以降低成本?

补仓这个术语我们在理财出资中经常听到&#xff0c;例如基金补仓&#xff0c;股票补仓。那么&#xff0c;补仓什么意思&#xff1f;怎样补仓能够降低成本&#xff1f;问道管理为我们预备了相关内容&#xff0c;以供参阅。 补仓什么意思&#xff1f; 股票补仓是指出资者在某一只…

Debian 12.1 “书虫 “发布,包含 89 个错误修复和 26 个安全更新

导读Debian 项目今天宣布&#xff0c;作为最新 Debian GNU/Linux 12 “书虫 “操作系统系列的首个 ISO 更新&#xff0c;Debian 12.1 正式发布并全面上市。 Debian 12.1 是在 Debian GNU/Linux 12 “书虫 “发布六周后推出的&#xff0c;目的是为那些希望在新硬件上部署操作系统…

Vivado进行自定义IP封装

一. 简介 本篇文章将介绍如何使用Vivado来对上篇文章(FPGA驱动SPI屏幕)中的代码进行一个IP封装&#xff0c;Vivado自带的IP核应该都使用过&#xff0c;非常方便。 这里将其封装成IP核的目的主要是为了后续项目的调用&#xff0c;否则当我新建一个项目的时候&#xff0c;我需要将…

VirtualBox Ubuntu无法安装增强功能以及无法复制粘贴踩坑记录

在VirtualBox安装增强功能想要和主机双向复制粘贴&#xff0c;中间查了很多资料&#xff0c;终于是弄好了。记录一下过程&#xff0c;可能对后来人也有帮助&#xff0c;我把我参考的几篇主要的博客都贴上来了&#xff0c;如果觉得我哪里讲得不清楚的&#xff0c;可以去对应的博…

Shell脚本学习-Shell函数

函数的作用就是将程序里多次被调用的相同代码组合起来&#xff08;函数体&#xff09;&#xff0c;并为其取一个名字&#xff0c;即函数名。其他所有想重复调用这部分代码的地方都只需要调用这个名字就可以了。当需要修改这部分代码时候&#xff0c;只需要修改函数体内的这部分…

【简单认识GFS分布式文件系统】

文章目录 一.GlusterFS 概述1.GlusterFS简介2.特点3.GlusterFS 术语4.模块化堆栈式架构5.GlusterFS 的工作流程6.GlusterFS的卷类型1、**分布式卷&#xff08;Distribute volume&#xff09;**2、条带卷&#xff08;Stripe volume&#xff09;3、复制卷&#xff08;Replica vol…

Web后端基本设计思想

JavaWeb应用的后端一般基于MVC和三层架构思想实现。 MVC是一种设计模式&#xff0c;用于开发用户界面和交互式应用程序。M即Model&#xff0c;业务模型&#xff0c;负责处理应用程序的业务逻辑和数据&#xff1b;V即View&#xff0c;视图&#xff0c;负责给用户展示界面和数据&…

快速创建vue3+vite+ts项目

安装nodejs 创建项目 npm init vitelatest 默认之后回车 选择项目名字my-vue-project 选择vue框架 选择ts 运行项目 cd my-vue-project npm install --registryhttps://registry.npm.taobao.org npm run dev

Vue2 第十二节 Vue组件化编程(一)

1.模块与组件&#xff0c;模块化与组件化概念 2. 非单文件组件 3. 组件编写注意事项 4. 组件的嵌套 一. 模块与组件&#xff0c;模块化与组件化 传统方式编写存在的问题 &#xff08;1&#xff09;依赖关系混乱&#xff0c;不好维护 &#xff08;2&#xff09;代码的复用…

炒股杠杆途乐证券;股票买入卖出时间规则?

股票买入卖出时刻规则是指出资者在股票商场上进行生意交易时需求遵循的一系列时刻规定。正确的买入和卖出时刻能够协助出资者最大化出资回报&#xff0c;一起降低风险。但是&#xff0c;在股票商场上&#xff0c;生意时刻的挑选是一个复杂的问题&#xff0c;需求从多个角度剖析…

vSphere ESXI 7.0 网络规划

ESXi 网络 业务网络、Vmotion&#xff08;漂移&#xff09;、管理网络、存储网络 ESXi 管理网络 vCenter Server 管理网络 vCenter Server SSO域名 Single Sign-on域名&#xff1a;在没有指定的情况下&#xff0c;默认填写 vsphere.local VMware vSphere整体解决方案和网络…

汽车行业案例 | 联合汽车电子全新质量问题管理平台上线,燕千云助力汽车电子领军者实现数字化质量管理

据权威调研机构显示&#xff0c;2022年中国智能电动汽车的销量已占新能源汽车的52%以上。到2025年&#xff0c;在新能源汽车50%的汽车出行市场渗透率的基础上&#xff0c;智能电动汽车的销量将超1220万辆&#xff0c;占新能源汽车的80.1%。在技术进步和产业变革快速推进的背景下…

git常用指令

git add命令 作用&#xff1a;移动文件&#xff1a;工作区-->暂存区 git add .&#xff1a;把所有文件都放到暂存区 git commit命令 作用&#xff1a;移动文件&#xff1a;暂存区-->本地仓库 git status命令 作用&#xff1a;查看修改状态 git log命令 作用&#xf…

嵌入式软件开发有没有捷径

嵌入式软件开发有没有什么捷径&#xff1f;不定期会收到类似的问题&#xff0c;我只想说&#xff1a;嵌入式软件开发没有捷径 说实话&#xff0c;有这种想法的人&#xff0c;我其实想劝你放弃。对于绝大多数普通人&#xff0c;一步一个脚印就是捷径。 当然&#xff0c;这个问题…

VLAN介绍

目录 VLAN的特点: VLAN的好处: VLAN的实现原理 VLAN标签 VLAN的划分方式 接口划分VLAN--接口类型 Access接口 Trunk接口 Hybrid接口 实现VLAN之间通信 使用路由器物理接口 使用子接口 使用三层交换机的VLANIF接口 配置 VLANIF的转发流程 三层交换机参与下的三层…

IDEA偶尔编译的时候不识别lombok

偶尔IDEA启动项目的时候会识别不到lombok,识别不到get()跟set()方法 方案 在settings添加下面代码 -Djps.track.ap.dependenciesfalse