本文涉及的基础知识点
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
本题其它解法
C++前缀和算法的应用:统计上升四元组
类似题解法
| 包括题目及代码 | C++二分查找算法:132 模式解法一枚举3 | 
| C++二分查找算法:132 模式解法二枚举2 | |
| 代码简洁 | C++二分查找算法:132 模式解法三枚举1 | 
| 性能最佳 | C++单调向量算法:132 模式解法三枚举1 | 
| 代码更简洁 | C++二分查找算法:132模式枚举3简洁版 | 
| 代码简洁,性能优越 | C++单调向量:132模式枚举1简洁版 | 
题目
给你一个长度为 n 下标从 0 开始的整数数组 nums ,它包含 1 到 n 的所有数字,请你返回上升四元组的数目。
 如果一个四元组 (i, j, k, l) 满足以下条件,我们称它是上升的:
 0 <= i < j < k < l < n 且
 nums[i] < nums[k] < nums[j] < nums[l] 。
 示例 1:
 输入:nums = [1,3,2,4,5]
 输出:2
 解释:
- 当 i = 0 ,j = 1 ,k = 2 且 l = 3 时,有 nums[i] < nums[k] < nums[j] < nums[l] 。
- 当 i = 0 ,j = 1 ,k = 2 且 l = 4 时,有 nums[i] < nums[k] < nums[j] < nums[l] 。
 没有其他的四元组,所以我们返回 2 。
 示例 2:
 输入:nums = [1,2,3,4]
 输出:0
 解释:只存在一个四元组 i = 0 ,j = 1 ,k = 2 ,l = 3 ,但是 nums[j] < nums[k] ,所以我们返回 0 。
 参数范围:
 4 <= nums.length <= 4000
 1 <= nums[i] <= nums.length
 nums 中所有数字 互不相同 ,nums 是一个排列。
第一版
分析
1324模式,第1的小在最前面,其次是第3小,再次是第2小的,最后是第4小的。
变量解释
| v21 | v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1) | 
| v32 | v32[i3][i2]=k,表示以num[i3]为3以nums[x]为2 组成的132模式的数量是k,x取[0,i2) | 
代码
class Solution {
 public:
 long long countQuadruplets(vector& nums) {
 m_c = nums.size();
 //v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
 vector<vector> v21(m_c,vector(m_c+1));
 for (int i2 = 0; i2 < m_c; i2++)
 {
 for (int i1 = 0; i1 < i2; i1++)
 {
 v21[i2][i1 + 1] = v21[i2][i1] + (nums[i1] < nums[i2]);
 }
 }
 vector<vector> v32(m_c, vector(m_c + 1));
 for (int i3 = 0; i3 < m_c; i3++)
 {
 for (int i2 = i3 + 1; i2 < m_c; i2++)
 {
 v32[i3][i2 + 1] = v32[i3][i2];
 if (nums[i3] > nums[i2])
 {
 v32[i3][i2 + 1] += v21[i2][i3];
 }
 }
 }
 long long llRet = 0;
 for (int i3 = 0; i3 < m_c; i3++)
 {
 for (int i4 = i3 + 1; i4 < m_c; i4++)
 {
 if (nums[i3] < nums[i4])
 {
 llRet += v32[i3][i4];
 }
 }
 }
 return llRet;
 }
 int m_c;
 };
测试用例
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){assert(v1[i] == v2[i]);}
}template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}int main()
{Solution slu;vector<int> nums ;long long res;nums = { 1, 3, 2, 4, 5 };res = slu.countQuadruplets(nums);Assert(2LL, res);nums = { 1, 2,3,4 };res = slu.countQuadruplets(nums);Assert(0LL, res);nums = { 4,3,2,1 };res = slu.countQuadruplets(nums);Assert(0LL, res);nums = { 4,3,2,6,5,1 };res = slu.countQuadruplets(nums);Assert(0LL, res);nums = { 1,3,2,4 };res = slu.countQuadruplets(nums);Assert(1LL, res);nums = { 2,1,4,3,5 };res = slu.countQuadruplets(nums);Assert(2LL, res);nums.clear();for (int i = 0; i < 4000; i++){nums.emplace_back(i + 1);}res = slu.countQuadruplets(nums);Assert(0LL, res);//CConsole::Out(res);
}
第二版
三步是如此相似,也许可以合并。第一步的循环似乎不同。我们把第一步的第一层循环换到第二层就更相似了。修改后的第一步:
	for (int i1 = 0; i1 < m_c ; i1++)		{for (int i2 = i1+1; i2 < m_c; i2++){v21[i2][i1 + 1] = v21[i2][i1] + (nums[i1] < nums[i2]);}}
第三版
第一层 的循环变量改成i,第一层的循环变量改成j。
class Solution {
public:long long countQuadruplets(vector<int>& nums) {m_c = nums.size();//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)vector<vector<int>> v21(m_c,vector<int>(m_c+1));for (int i = 0; i < m_c ; i++)		{for (int j = i+1; j < m_c; j++){v21[j][i + 1] = v21[j][i] + (nums[i] < nums[j]);}}vector<vector<int>> v32(m_c, vector<int>(m_c + 1));for (int i = 0; i < m_c; i++){for (int j = i + 1; j < m_c; j++){v32[i][j + 1] = v32[i][j];if (nums[i] > nums[j]){v32[i][j + 1] += v21[j][i];}}}long long llRet = 0;for (int i = 0; i < m_c; i++){for (int j = i + 1; j < m_c; j++){if (nums[i] < nums[j]){llRet += v32[i][j];}}}return llRet;}int m_c;
};
第四版
三轮循环合并。
class Solution {
public:long long countQuadruplets(vector<int>& nums) {m_c = nums.size();//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)vector<vector<int>> v21(m_c,vector<int>(m_c+1));vector<vector<int>> v32(m_c, vector<int>(m_c + 1));long long llRet = 0;for (int i = 0; i < m_c ; i++)		{for (int j = i+1; j < m_c; j++){v21[j][i + 1] = v21[j][i] + (nums[i] < nums[j]);v32[i][j + 1] = v32[i][j];if (nums[i] > nums[j]){v32[i][j + 1] += v21[j][i];}if (nums[i] < nums[j]){llRet += v32[i][j];}}}return llRet;}int m_c;
};
第五版
v2 只用到三处, v21[j][i + 1] 和 v21[j][i],可以简化成一维变量。
 优化后,代码如下:
class Solution {
public:long long countQuadruplets(vector<int>& nums) {m_c = nums.size();//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)vector<vector<int>> v32(m_c, vector<int>(m_c + 1));long long llRet = 0;vector<int> v21(m_c);for (int i = 0; i < m_c ; i++)		{			for (int j = i+1; j < m_c; j++){		v32[i][j + 1] = v32[i][j];if (nums[i] > nums[j]){v32[i][j + 1] += v21[j];}if (nums[i] < nums[j]){llRet += v32[i][j];}v21[j] +=  (nums[i] < nums[j]);}}return llRet;}int m_c;
};
第六版
v32只用到v32[i][j + 1] v32[i][j],我们可以简化成一个变量i32,i发生变化的时候赋初值0。
class Solution {
public:long long countQuadruplets(vector<int>& nums) {m_c = nums.size();//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)long long llRet = 0;vector<int> v21(m_c);for (int i = 0; i < m_c ; i++)		{	int i32 = 0;for (int j = i+1; j < m_c; j++){					if (nums[i] < nums[j]){llRet += i32;}if (nums[i] > nums[j]){i32 += v21[j];}v21[j] +=  (nums[i] < nums[j]);}}return llRet;}int m_c;
};
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
 https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
 https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
 https://download.csdn.net/download/he_zhidan/88348653
| 我想对大家说的话 | 
|---|
| 闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 | 
| 子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 | 
| 如果程序是一条龙,那算法就是他的是睛 | 
测试环境
操作系统:win7 开发环境: VS2019 C++17
 或者 操作系统:win10 开发环境:
VS2022 C++17
