Flink 系列文章
1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接
13、Flink 的table api与sql的基本概念、通用api介绍及入门示例
14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及FileSystem示例(1)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Elasticsearch示例(2)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Kafka示例(3)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及JDBC示例(4)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)
17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)
18、Flink的SQL 支持的操作和语法
19、Flink 的Table API 和 SQL 中的内置函数及示例(1)
19、Flink 的Table API 和 SQL 中的自定义函数及示例(2)
19、Flink 的Table API 和 SQL 中的自定义函数及示例(3)
19、Flink 的Table API 和 SQL 中的自定义函数及示例(4)
20、Flink SQL之SQL Client: 不用编写代码就可以尝试 Flink SQL,可以直接提交 SQL 任务到集群上
21、Flink 的table API与DataStream API 集成(1)- 介绍及入门示例、集成说明
21、Flink 的table API与DataStream API 集成(2)- 批处理模式和inser-only流处理
21、Flink 的table API与DataStream API 集成(3)- changelog流处理、管道示例、类型转换和老版本转换示例
21、Flink 的table API与DataStream API 集成(完整版)
22、Flink 的table api与sql之创建表的DDL
24、Flink 的table api与sql之Catalogs(介绍、类型、java api和sql实现ddl、java api和sql操作catalog)-1
24、Flink 的table api与sql之Catalogs(java api操作数据库、表)-2
24、Flink 的table api与sql之Catalogs(java api操作视图)-3
24、Flink 的table api与sql之Catalogs(java api操作分区与函数)-4
25、Flink 的table api与sql之函数(自定义函数示例)
26、Flink 的SQL之概览与入门示例
27、Flink 的SQL之SELECT (select、where、distinct、order by、limit、集合操作和去重)介绍及详细示例(1)
27、Flink 的SQL之SELECT (SQL Hints 和 Joins)介绍及详细示例(2)
27、Flink 的SQL之SELECT (窗口函数)介绍及详细示例(3)
27、Flink 的SQL之SELECT (窗口聚合)介绍及详细示例(4)
27、Flink 的SQL之SELECT (Group Aggregation分组聚合、Over Aggregation Over聚合 和 Window Join 窗口关联)介绍及详细示例(5)
27、Flink 的SQL之SELECT (Top-N、Window Top-N 窗口 Top-N 和 Window Deduplication 窗口去重)介绍及详细示例(6)
27、Flink 的SQL之SELECT (Pattern Recognition 模式检测)介绍及详细示例(7)
28、Flink 的SQL之DROP 、ALTER 、INSERT 、ANALYZE 语句
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(1)
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(2)
30、Flink SQL之SQL 客户端(通过kafka和filesystem的例子介绍了配置文件使用-表、视图等)
31、Flink的SQL Gateway介绍及示例
32、Flink table api和SQL 之用户自定义 Sources & Sinks实现及详细示例
33、Flink 的Table API 和 SQL 中的时区
35、Flink 的 Formats 之CSV 和 JSON Format
36、Flink 的 Formats 之Parquet 和 Orc Format
41、Flink之Hive 方言介绍及详细示例
40、Flink 的Apache Kafka connector(kafka source的介绍及使用示例)-1
40、Flink 的Apache Kafka connector(kafka sink的介绍及使用示例)-2
40、Flink 的Apache Kafka connector(kafka source 和sink 说明及使用示例) 完整版
42、Flink 的table api与sql之Hive Catalog
43、Flink之Hive 读写及详细验证示例
44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例–网上有些说法好像是错误的
45、Flink 的指标体系介绍及验证(1)-指标类型及指标实现示例
45、Flink 的指标体系介绍及验证(2)-指标的scope、报告、系统指标以及追踪、api集成示例和dashboard集成
45、Flink 的指标体系介绍及验证(3)- 完整版
46、Flink 的table api与sql之配项列表及示例
文章目录
- Flink 系列文章
- 一、Flink 指标体系
- 1、Registering metrics 注册指标
- 1)、指标类型
- 2)、计数器
- 3)、Gauge
- 4)、Histogram
- 5)、Meter
本文简单的介绍了Flink 的指标体系的第一部分,即指标类型以及四种类型的代码实现示例。
本专题分为三部分,即:
45、Flink 的指标体系介绍及验证(1)-指标类型及指标实现示例
45、Flink 的指标体系介绍及验证(2)-指标的scope、报告、系统指标以及追踪、api集成示例和dashboard集成
45、Flink 的指标体系介绍及验证(3)- 完整版
本文依赖nc能正常使用。
本文分为5个部分,即指标分类、计数器、gauge、histogram和meter四个指标的代码实现。
本文的示例是在Flink 1.17版本中运行。
一、Flink 指标体系
Flink暴露了一个度量系统,允许收集度量并将其公开给外部系统。
本文涉及的maven依赖
<properties><encoding>UTF-8</encoding><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><java.version>1.8</java.version><scala.version>2.12</scala.version><flink.version>1.17.0</flink.version></properties><dependencies><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-csv</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-json</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- flink连接器 --><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>${flink.version}</version></dependency></dependencies>
1、Registering metrics 注册指标
通过调用getRuntimeContext().getMetricGroup(),您可以从任何扩展RichFunction的用户函数访问度量系统。此方法返回一个MetricGroup对象,您可以在该对象上创建和注册新度量。
1)、指标类型
Flink支持计数器、仪表盘、柱状图和计量表。Counters, Gauges, Histograms and Meters.
2)、计数器
计数器是用来统计数量的。当前值可以是in-或使用 inc()/inc(long n)或dec()/dec(long n)增减。您可以通过调用MetricGroup上的 counter(String name)来创建和注册计数器。
本示例提供了多种实现方式,供参考。
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.metrics.Counter;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** @author alanchan**/
public class TestMetricsDemo {// public class LineMapper extends RichMapFunction<String, String> {
// private transient Counter counter;
//
// @Override
// public void open(Configuration config) {
// this.counter = getRuntimeContext().getMetricGroup().counter("result2LineCounter");
// }
//
// @Override
// public String map(String value) throws Exception {
// this.counter.inc();
// return value;
// }
// }public static void test1() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);env.setParallelism(1);// sourceDataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);// transformationDataStream<Tuple2<String, Integer>> result = lines.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {String[] arr = value.split(",");for (String word : arr) {out.collect(word);}}}).map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String value) throws Exception {return Tuple2.of(value, 1);}}).keyBy(t -> t.f0).sum(1);// SingleOutputStreamOperator<Tuple2<Integer, Integer>> result1 = lines.map(new RichMapFunction<String, Tuple2<Integer, Integer>>() {
//
// @Override
// public Tuple2<Integer, Integer> map(String value) throws Exception {
// int subTaskId = getRuntimeContext().getIndexOfThisSubtask();// 子任务id/分区编号
// return new Tuple2(subTaskId, 1);
// }
// // 按照子任务id/分区编号分组,并统计每个子任务/分区中有几个元素
// }).keyBy(t -> t.f0).sum(1);// RichFlatMapFunction<IN, OUT>// Tuple3<String, Long, Integer> 输入的字符串,行数,统计单词的总数DataStream<Tuple3<String, Long, Integer>> result2 = lines.flatMap(new RichFlatMapFunction<String, Tuple2<String, Long>>() {
// private transient Counter counter;private long result2LineCounter = 0;@Overridepublic void open(Configuration config) {
// this.counter = getRuntimeContext().getMetricGroup().counter("result2LineCounter:");result2LineCounter = getRuntimeContext().getMetricGroup().counter("result2LineCounter:").getCount();}@Overridepublic void flatMap(String value, Collector<Tuple2<String, Long>> out) throws Exception {
// this.counter.inc();result2LineCounter++;System.out.println("计数器行数:" + result2LineCounter);String[] arr = value.split(",");for (String word : arr) {out.collect(Tuple2.of(word, result2LineCounter));}}}).map(new MapFunction<Tuple2<String, Long>, Tuple3<String, Long, Integer>>() {@Overridepublic Tuple3<String, Long, Integer> map(Tuple2<String, Long> value) throws Exception {
// Tuple3<String, Long, Integer> t = Tuple3.of(value.f0, value.f1, 1);return Tuple3.of(value.f0, value.f1, 1);}}).keyBy(t -> t.f0).sum(2);// sinkresult.print("result:");result2.print("result2:");env.execute();}public static void main(String[] args) throws Exception {test1();
// StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// env.setParallelism(1);
// DataStream<String> input = env.fromElements("a", "b", "c", "a", "b", "c");
//
// input.keyBy(value -> value).map(new RichMapFunction<String, String>() {
// private long count = 0;
//
// @Override
// public void open(Configuration parameters) throws Exception {
super.open(parameters);
// count = getRuntimeContext().getMetricGroup().counter("myCounter").getCount();
// }
//
// @Override
// public String map(String value) throws Exception {
// count++;
// return value + ": " + count;
// }
// }).print();
//
// env.execute("Flink Count Counter Example");}}
///验证数据///
// 输入数据
[alanchan@server2 bin]$ nc -lk 9999
hello,123
alan,flink,good
alan_chan,hi,flink//控制台输出:
计数器行数:1
result:> (hello,1)
result2:> (hello,1,1)
result:> (123,1)
result2:> (123,1,1)
计数器行数:2
result2:> (alan,2,1)
result:> (alan,1)
result2:> (flink,2,1)
result:> (flink,1)
result2:> (good,2,1)
result:> (good,1)
计数器行数:3
result:> (alan_chan,1)
result2:> (alan_chan,3,1)
result:> (hi,1)
result2:> (hi,3,1)
result:> (flink,2)
result2:> (flink,2,2)
或者,您也可以使用自己的Counter实现:
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.metrics.Counter;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** @author alanchan**/
public class TestMetricsDemo {public static void test2() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);env.setParallelism(1);// sourceDataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);// transformation// Tuple3<String, Long, Integer> 输入的字符串,行数,统计单词的总数DataStream<Tuple3<String, Long, Integer>> result = lines.flatMap(new RichFlatMapFunction<String, Tuple2<String, Long>>() {private transient Counter counter;@Overridepublic void open(Configuration config) {this.counter = getRuntimeContext().getMetricGroup().counter("result2LineCounter", new AlanCustomCounter());}@Overridepublic void flatMap(String value, Collector<Tuple2<String, Long>> out) throws Exception {this.counter.inc();
// result2LineCounter++;System.out.println("计数器行数:" + this.counter.getCount());String[] arr = value.split(",");for (String word : arr) {out.collect(Tuple2.of(word, this.counter.getCount()));}}}).map(new MapFunction<Tuple2<String, Long>, Tuple3<String, Long, Integer>>() {@Overridepublic Tuple3<String, Long, Integer> map(Tuple2<String, Long> value) throws Exception {return Tuple3.of(value.f0, value.f1, 1);}}).keyBy(t -> t.f0).sum(2);// sinkresult.print("result:");env.execute();}public static class AlanCustomCounter implements Counter {private long count;@Overridepublic void inc() {count += 2;}@Overridepublic void inc(long n) {count += n;}@Overridepublic void dec() {count -= 2;}@Overridepublic void dec(long n) {count -= n;}@Overridepublic long getCount() {return count;}}public static void main(String[] args) throws Exception {test2();}}///验证数据///
// 输入数据
[alanchan@server2 bin]$ nc -lk 9999
hello,123
alan,flink,good
alan_chan,hi,flink//控制台输出:
计数器行数:2
result:> (hello,2,1)
result:> (123,2,1)
计数器行数:4
result:> (alan,4,1)
result:> (flink,4,1)
result:> (good,4,1)
计数器行数:6
result:> (alan_chan,6,1)
result:> (hi,6,1)
result:> (flink,4,2)
3)、Gauge
仪表可根据需要提供任何类型的值。为了使用Gauge,您必须首先创建一个实现org.apache.flink.metrics.Guge接口的类。返回值的类型没有限制。您可以通过调用MetricGroup上的gauge(String name, Gauge gauge) 来注册gauge。
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.metrics.Counter;
import org.apache.flink.metrics.Gauge;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** @author alanchan**/
public class TestMetricsGaugeDemo {
// public class MyMapper extends RichMapFunction<String, String> {
// private transient int valueToExpose = 0;
//
// @Override
// public void open(Configuration config) {
// getRuntimeContext().getMetricGroup().gauge("MyGauge", new Gauge<Integer>() {
// @Override
// public Integer getValue() {
// return valueToExpose;
// }
// });
// }
//
// @Override
// public String map(String value) throws Exception {
// valueToExpose++;
// return value;
// }
// }public static void test1() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);env.setParallelism(1);// sourceDataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);// transformation// RichFlatMapFunction<IN, OUT>// Tuple3<String, String, Integer> 输入的字符串,alan lines[行数],统计单词的总数DataStream<Tuple3<String, String, Integer>> result = lines.flatMap(new RichFlatMapFunction<String, Tuple2<String, String>>() {private long result2LineCounter = 0;private Gauge<String> gauge = null;@Overridepublic void open(Configuration config) {result2LineCounter = getRuntimeContext().getMetricGroup().counter("resultLineCounter:").getCount();gauge = getRuntimeContext().getMetricGroup().gauge("alanGauge", new Gauge<String>() {@Overridepublic String getValue() {return "alan lines[" + result2LineCounter + "]";}});}@Overridepublic void flatMap(String value, Collector<Tuple2<String, String>> out) throws Exception {result2LineCounter++;System.out.println("计数器行数:" + result2LineCounter);String[] arr = value.split(",");for (String word : arr) {out.collect(Tuple2.of(word, gauge.getValue()));}}}).map(new MapFunction<Tuple2<String, String>, Tuple3<String, String, Integer>>() {@Overridepublic Tuple3<String, String, Integer> map(Tuple2<String, String> value) throws Exception {return Tuple3.of(value.f0, value.f1, 1);}}).keyBy(t -> t.f0).sum(2);// sinkresult.print("result:");env.execute();}public static void main(String[] args) throws Exception {test1();}}///验证数据///
// 输入数据
[alanchan@server2 bin]$ nc -lk 9999
hello,123
alan,flink,good
alan_chan,hi,flink//控制台输出:
计数器行数:1
result:> (hello,alan lines[1],1)
result:> (123,alan lines[1],1)
计数器行数:2
result:> (alan,alan lines[2],1)
result:> (flink,alan lines[2],1)
result:> (good,alan lines[2],1)
计数器行数:3
result:> (alan_chan,alan lines[3],1)
result:> (hi,alan lines[3],1)
result:> (flink,alan lines[2],2)
报告器会将暴露的对象转换为String,这意味着需要一个有意义的toString()实现。
4)、Histogram
直方图测量长值的分布。您可以通过调用MetricGroup上的histogram(String name, Histogram histogram) 来注册一个对象。
下面的示例是自己实现的Histogram接口,仅仅用于演示实现过程。
import java.io.Serializable;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.metrics.Gauge;
//import com.codahale.metrics.Histogram;
import org.apache.flink.metrics.Histogram;
import org.apache.flink.metrics.HistogramStatistics;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** @author alanchan**/
public class TestMetricsHistogramDemo {// public class MyMapper extends RichMapFunction<Long, Long> {
// private transient Histogram histogram;
//
// @Override
// public void open(Configuration config) {
// this.histogram = getRuntimeContext().getMetricGroup().histogram("alanHistogram", new AlanHistogram());
// }
//
// @Override
// public Long map(Long value) throws Exception {
// this.histogram.update(value);
// return value;
// }
// }public static class AlanHistogram implements Histogram {private CircularDoubleArray descriptiveStatistics = new CircularDoubleArray(10);;public AlanHistogram() {}public AlanHistogram(int windowSize) {this.descriptiveStatistics = new CircularDoubleArray(windowSize);}@Overridepublic void update(long value) {this.descriptiveStatistics.addValue(value);}@Overridepublic long getCount() {return this.descriptiveStatistics.getElementsSeen();}@Overridepublic HistogramStatistics getStatistics() {
// return new DescriptiveStatisticsHistogramStatistics(this.descriptiveStatistics);return null;}class CircularDoubleArray implements Serializable {private static final long serialVersionUID = 1L;private final double[] backingArray;private int nextPos = 0;private boolean fullSize = false;private long elementsSeen = 0;CircularDoubleArray(int windowSize) {this.backingArray = new double[windowSize];}synchronized void addValue(double value) {backingArray[nextPos] = value;++elementsSeen;++nextPos;if (nextPos == backingArray.length) {nextPos = 0;fullSize = true;}}synchronized double[] toUnsortedArray() {final int size = getSize();double[] result = new double[size];System.arraycopy(backingArray, 0, result, 0, result.length);return result;}private synchronized int getSize() {return fullSize ? backingArray.length : nextPos;}private synchronized long getElementsSeen() {return elementsSeen;}}}public static void test1() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);env.setParallelism(1);// sourceDataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);// transformation// RichFlatMapFunction<IN, OUT>// Tuple3<String, String, Integer> 输入的字符串,alan lines[行数],统计单词的总数DataStream<Tuple3<String, String, Integer>> result = lines.flatMap(new RichFlatMapFunction<String, Tuple2<String, String>>() {private long result2LineCounter = 0;private Gauge<String> gauge = null;private Histogram histogram = null;;@Overridepublic void open(Configuration config) {result2LineCounter = getRuntimeContext().getMetricGroup().counter("resultLineCounter:").getCount();gauge = getRuntimeContext().getMetricGroup().gauge("alanGauge", new Gauge<String>() {@Overridepublic String getValue() {return "alan lines[" + result2LineCounter + "]";}});this.histogram = getRuntimeContext().getMetricGroup().histogram("alanHistogram", new AlanHistogram());}@Overridepublic void flatMap(String value, Collector<Tuple2<String, String>> out) throws Exception {result2LineCounter++;this.histogram.update(result2LineCounter * 3);// 此处仅仅示例this.histogram.getCount()的值,没有实际的意义System.out.println("计数器行数:" + result2LineCounter + " histogram:" + this.histogram.getCount());String[] arr = value.split(",");for (String word : arr) {out.collect(Tuple2.of(word, gauge.getValue()));}}}).map(new MapFunction<Tuple2<String, String>, Tuple3<String, String, Integer>>() {@Overridepublic Tuple3<String, String, Integer> map(Tuple2<String, String> value) throws Exception {return Tuple3.of(value.f0, value.f1, 1);}}).keyBy(t -> t.f0).sum(2);// sinkresult.print("result:");env.execute();}public static void main(String[] args) throws Exception {test1();}}///验证数据///
// 输入数据
[alanchan@server2 bin]$ nc -lk 9999
hello,123
alan,flink,good
alan_chan,hi,flink//控制台输出:
计数器行数:1 histogram:1
result:> (hello,alan lines[1],1)
result:> (123,alan lines[1],1)
计数器行数:2 histogram:2
result:> (alan,alan lines[2],1)
result:> (flink,alan lines[2],1)
result:> (good,alan lines[2],1)
计数器行数:3 histogram:3
result:> (alan_chan,alan lines[3],1)
result:> (hi,alan lines[3],1)
result:> (flink,alan lines[2],2)
Flink没有提供直方图的默认实现,但提供了一个允许使用Codahale/DropWizard直方图的包装器。要使用此包装器,
在pom.xml中添加以下依赖项:
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-metrics-dropwizard</artifactId><version>1.17.1</version>
</dependency>
下面的示例是使用 Codahale/DropWizard直方图,如下所示:
import java.io.Serializable;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.dropwizard.metrics.DropwizardHistogramWrapper;
import org.apache.flink.metrics.Gauge;
//import com.codahale.metrics.Histogram;
import org.apache.flink.metrics.Histogram;
import org.apache.flink.metrics.HistogramStatistics;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;import com.codahale.metrics.SlidingWindowReservoir;/*** @author alanchan**/
public class TestMetricsHistogramDemo {public static void test2() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);env.setParallelism(1);// sourceDataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);// transformation// RichFlatMapFunction<IN, OUT>// Tuple3<String, String, Integer> 输入的字符串,alan lines[行数],统计单词的总数DataStream<Tuple3<String, String, Integer>> result = lines.flatMap(new RichFlatMapFunction<String, Tuple2<String, String>>() {private long result2LineCounter = 0;private Gauge<String> gauge = null;private Histogram histogram = null;;@Overridepublic void open(Configuration config) {result2LineCounter = getRuntimeContext().getMetricGroup().counter("resultLineCounter:").getCount();gauge = getRuntimeContext().getMetricGroup().gauge("alanGauge", new Gauge<String>() {@Overridepublic String getValue() {return "alan lines[" + result2LineCounter + "]";}});com.codahale.metrics.Histogram dropwizardHistogram = new com.codahale.metrics.Histogram(new SlidingWindowReservoir(500));
// this.histogram = getRuntimeContext().getMetricGroup().histogram("alanHistogram", new AlanHistogram());this.histogram = getRuntimeContext().getMetricGroup().histogram("alanHistogram", new DropwizardHistogramWrapper(dropwizardHistogram));}@Overridepublic void flatMap(String value, Collector<Tuple2<String, String>> out) throws Exception {result2LineCounter++;this.histogram.update(result2LineCounter * 3);// 此处仅仅示例this.histogram.getCount()的值,没有实际的意义System.out.println("计数器行数:" + result2LineCounter + " histogram:" + this.histogram.getCount());String[] arr = value.split(",");for (String word : arr) {out.collect(Tuple2.of(word, gauge.getValue()));}}}).map(new MapFunction<Tuple2<String, String>, Tuple3<String, String, Integer>>() {@Overridepublic Tuple3<String, String, Integer> map(Tuple2<String, String> value) throws Exception {return Tuple3.of(value.f0, value.f1, 1);}}).keyBy(t -> t.f0).sum(2);// sinkresult.print("result:");env.execute();}public static void main(String[] args) throws Exception {test2();}}///验证数据///
// 输入数据
[alanchan@server2 bin]$ nc -lk 9999
hello,123
alan,flink,good
alan_chan,hi,flink//控制台输出://控制台输出:
计数器行数:1 histogram:1
result:> (hello,alan lines[1],1)
result:> (123,alan lines[1],1)
计数器行数:2 histogram:2
result:> (alan,alan lines[2],1)
result:> (flink,alan lines[2],1)
result:> (good,alan lines[2],1)
计数器行数:3 histogram:3
result:> (alan_chan,alan lines[3],1)
result:> (hi,alan lines[3],1)
result:> (flink,alan lines[2],2)
5)、Meter
仪表测量平均吞吐量。可以使用markEvent()方法注册事件的发生。可以使用markEvent(long n)方法注册同时发生多个事件。您可以通过在MetricGroup上调用meter(String name, Meter meter)来注册meter。
下面的示例展示了自定义的Meter实现,可能很不严谨,实际上应用更多的是本部分的第二个示例。
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.dropwizard.metrics.DropwizardHistogramWrapper;
import org.apache.flink.metrics.Counter;
import org.apache.flink.metrics.Gauge;
import org.apache.flink.metrics.Histogram;
import org.apache.flink.metrics.Meter;
import org.apache.flink.metrics.SimpleCounter;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;//import com.codahale.metrics.Meter;
import com.codahale.metrics.SlidingWindowReservoir;/*** @author alanchan**/
public class TestMetricsMeterDemo {public class MyMapper extends RichMapFunction<Long, Long> {private transient Meter meter;@Overridepublic void open(Configuration config) {this.meter = getRuntimeContext().getMetricGroup().meter("myMeter", new AlanMeter());}@Overridepublic Long map(Long value) throws Exception {this.meter.markEvent();return value;}}public static class AlanMeter implements Meter {/** The underlying counter maintaining the count. */private final Counter counter = new SimpleCounter();;/** The time-span over which the average is calculated. */private final int timeSpanInSeconds = 0;/** Circular array containing the history of values. */private final long[] values = null;;/** The index in the array for the current time. */private int time = 0;/** The last rate we computed. */private double currentRate = 0;@Overridepublic void markEvent() {this.counter.inc();}@Overridepublic void markEvent(long n) {this.counter.inc(n);}@Overridepublic long getCount() {return counter.getCount();}@Overridepublic double getRate() {return currentRate;}public void update() {time = (time + 1) % values.length;values[time] = counter.getCount();currentRate = ((double) (values[time] - values[(time + 1) % values.length]) / timeSpanInSeconds);}}public static void test1() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);env.setParallelism(1);// sourceDataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);// transformation// RichFlatMapFunction<IN, OUT>// Tuple3<String, String, Integer> 输入的字符串,alan lines[行数],统计单词的总数DataStream<Tuple3<String, String, Integer>> result = lines.flatMap(new RichFlatMapFunction<String, Tuple2<String, String>>() {private long result2LineCounter = 0;private Gauge<String> gauge = null;private Histogram histogram = null;private Meter meter;@Overridepublic void open(Configuration config) {result2LineCounter = getRuntimeContext().getMetricGroup().counter("resultLineCounter:").getCount();gauge = getRuntimeContext().getMetricGroup().gauge("alanGauge", new Gauge<String>() {@Overridepublic String getValue() {return "alan lines[" + result2LineCounter + "]";}});com.codahale.metrics.Histogram dropwizardHistogram = new com.codahale.metrics.Histogram(new SlidingWindowReservoir(500));this.histogram = getRuntimeContext().getMetricGroup().histogram("alanHistogram", new DropwizardHistogramWrapper(dropwizardHistogram));this.meter = getRuntimeContext().getMetricGroup().meter("alanMeter", new AlanMeter());}@Overridepublic void flatMap(String value, Collector<Tuple2<String, String>> out) throws Exception {result2LineCounter++;this.histogram.update(result2LineCounter * 3);this.meter.markEvent();// 此处仅仅示例this.histogram.getCount()、this.meter.getRate()的值,没有实际的意义,具体使用以实际使用场景为准System.out.println("计数器行数:" + result2LineCounter + ", histogram:" + this.histogram.getCount() + ", meter.getRate:" + this.meter.getRate());String[] arr = value.split(",");for (String word : arr) {out.collect(Tuple2.of(word, gauge.getValue()));}}}).map(new MapFunction<Tuple2<String, String>, Tuple3<String, String, Integer>>() {@Overridepublic Tuple3<String, String, Integer> map(Tuple2<String, String> value) throws Exception {return Tuple3.of(value.f0, value.f1, 1);}}).keyBy(t -> t.f0).sum(2);// sinkresult.print("result:");env.execute();}public static void main(String[] args) throws Exception {test1();}}///验证数据///
// 输入数据
[alanchan@server2 bin]$ nc -lk 9999
hello,123
alan,flink,good
alan_chan,hi,flink//控制台输出:
计数器行数:1, histogram:1, meter.getRate:0.0
result:> (hello,alan lines[1],1)
result:> (123,alan lines[1],1)
计数器行数:2, histogram:2, meter.getRate:0.0
result:> (alan,alan lines[2],1)
result:> (flink,alan lines[2],1)
result:> (good,alan lines[2],1)
计数器行数:3, histogram:3, meter.getRate:0.0
result:> (alan_chan,alan lines[3],1)
result:> (hi,alan lines[3],1)
result:> (flink,alan lines[2],2)
Flink提供了一个允许使用Codahale/DropWizard仪表的包装器。要使用此包装器,
在pom.xml中添加以下依赖项:
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-metrics-dropwizard</artifactId><version>1.17.1</version>
</dependency>
下面使用Codahale/DropWizard注册的示例,如下所示:
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.dropwizard.metrics.DropwizardHistogramWrapper;
import org.apache.flink.dropwizard.metrics.DropwizardMeterWrapper;
import org.apache.flink.metrics.Counter;
import org.apache.flink.metrics.Gauge;
import org.apache.flink.metrics.Histogram;
import org.apache.flink.metrics.Meter;
import org.apache.flink.metrics.SimpleCounter;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;//import com.codahale.metrics.Meter;
import com.codahale.metrics.SlidingWindowReservoir;/*** @author alanchan**/
public class TestMetricsMeterDemo {public static void test2() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);env.setParallelism(1);// sourceDataStream<String> lines = env.socketTextStream("192.168.10.42", 9999);// transformation// RichFlatMapFunction<IN, OUT>// Tuple3<String, String, Integer> 输入的字符串,alan lines[行数],统计单词的总数DataStream<Tuple3<String, String, Integer>> result = lines.flatMap(new RichFlatMapFunction<String, Tuple2<String, String>>() {private long result2LineCounter = 0;private Gauge<String> gauge = null;private Histogram histogram = null;private Meter meter;@Overridepublic void open(Configuration config) {result2LineCounter = getRuntimeContext().getMetricGroup().counter("resultLineCounter:").getCount();gauge = getRuntimeContext().getMetricGroup().gauge("alanGauge", new Gauge<String>() {@Overridepublic String getValue() {return "alan lines[" + result2LineCounter + "]";}});com.codahale.metrics.Histogram dropwizardHistogram = new com.codahale.metrics.Histogram(new SlidingWindowReservoir(500));this.histogram = getRuntimeContext().getMetricGroup().histogram("alanHistogram", new DropwizardHistogramWrapper(dropwizardHistogram));// this.meter = getRuntimeContext().getMetricGroup().meter("alanMeter", new AlanMeter());com.codahale.metrics.Meter dropwizardMeter = new com.codahale.metrics.Meter();this.meter = getRuntimeContext().getMetricGroup().meter("alanMeter", new DropwizardMeterWrapper(dropwizardMeter));}@Overridepublic void flatMap(String value, Collector<Tuple2<String, String>> out) throws Exception {result2LineCounter++;this.histogram.update(result2LineCounter * 3);this.meter.markEvent();// 此处仅仅示例this.histogram.getCount()、this.meter.getRate()的值,没有实际的意义,具体使用以实际使用场景为准System.out.println("计数器行数:" + result2LineCounter + ", histogram:" + this.histogram.getCount() + ", meter.getRate:" + this.meter.getRate());String[] arr = value.split(",");for (String word : arr) {out.collect(Tuple2.of(word, gauge.getValue()));}}}).map(new MapFunction<Tuple2<String, String>, Tuple3<String, String, Integer>>() {@Overridepublic Tuple3<String, String, Integer> map(Tuple2<String, String> value) throws Exception {return Tuple3.of(value.f0, value.f1, 1);}}).keyBy(t -> t.f0).sum(2);// sinkresult.print("result:");env.execute();}public static void main(String[] args) throws Exception {test2();}}//控制台输出:
计数器行数:1, histogram:1, meter.getRate:0.0
result:> (hello,alan lines[1],1)
result:> (123,alan lines[1],1)
计数器行数:2, histogram:2, meter.getRate:0.0
result:> (alan,alan lines[2],1)
result:> (flink,alan lines[2],1)
result:> (good,alan lines[2],1)
计数器行数:3, histogram:3, meter.getRate:0.0
result:> (alan_chan,alan lines[3],1)
result:> (hi,alan lines[3],1)
result:> (flink,alan lines[2],2)
以上,本文简单的介绍了Flink 的指标体系的第一部分,即指标类型以及四种类型的代码实现示例。
本专题分为三部分,即:
45、Flink 的指标体系介绍及验证(1)-指标类型及指标实现示例
45、Flink 的指标体系介绍及验证(2)-指标的scope、报告、系统指标以及追踪、api集成示例和dashboard集成
45、Flink 的指标体系介绍及验证(3)- 完整版