什么是SVM算法?硬间隔和软间隔的分类问题

SVM全称是supported vector machine(支持向量机),即寻找到一个超平面使样本分成两类,并且间隔最大。

SVM能够执行线性或⾮线性分类、回归,甚至是异常值检测任务。它是机器学习领域最受欢迎的模型之一。SVM特别适用于中小型复杂数据集的分类。

1662543937323_6.png

超平面最大间隔

超平面最大间隔

上左图显示了三种可能的线性分类器的决策边界:虚线所代表的模型表现非常糟糕,甚至都无法正确实现分类。其余两个模型在这个训练集上表现堪称完美,但是它们的决策边界与实例过于接近,导致在面对新实例时,表现可能不会太好。

右图中的实线代表SVM分类器的决策边界,不仅分离了两个类别,且尽可能远离最近的训练实例。

硬间隔分类

在上面我们使用超平面进行分割数据的过程中,如果我们严格地让所有实例都不在最大=大间隔之间,并且位于正确的一边,这就是硬间隔分类。

硬间隔分类有两个问题,首先,它只在数据是线性可分离的时候才有效;其次,它对异常值非常敏感。

当有一个额外异常值的鸢尾花数据:左图的数据根本找不出硬间隔,而右图最终显示的决策边界与我们之前所看到的无异常值时的决策边界也大不相同,可能无法很好地泛化。

1662544014623_8.png

软间隔分类

要避免这些问题,最好使用更灵活的模型。目标是尽可能在保持最大间隔宽阔和限制间隔违例(即位于最大间隔之上,甚至在错误的一边的实例)之间找到良好的平衡,这就是软间隔分类。

要避免这些问题,最好使用更灵活的模型。目标是尽可能在保持间隔宽阔和限制间隔违例之间找到良好的平衡,这就是软间隔分类。

软间隔分类

在Scikit-Learn的SVM类中,可以通过超参数C来控制这个平衡:C值越小,则间隔越宽,但是间隔违例也会越多。上图 显示了在一个非线性可分离数据集上,两个软间隔SVM分类器各自的决策边界和间隔。

左边使用了高C值,分类器的错误样本(间隔违例)较少,但是间隔也较小。

右边使用了低C值,间隔大了很多,但是位于间隔上的实例也更多。看起来第二个分类器的泛化效果更好,因为大多数间隔违例实际上都位于决策边界正确的一边,所以即便是在该训练集上,它做出的错误预测也会更少。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/14833.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Python生成文件的MD5和sha1

使用Python生成文件的MD5和sha1 1. [代码]生成文件的MD5和sha1 #codingUTF-8 # www.iplaypy.com python # XingHe Studio File to MD5 and SHA1def fil_changefileext(filename,extname):# FIL ChangeFileExt 改变文件扩展名# filename 输入的文件路径名# extname 要更改…

CentOS 8 错误: Error setting up base repository

配置ip、掩码、网关、DNS VMware网关可通过如下查看 打开网络连接 配置镜像的地址 vault.centos.org/8.5.2111/BaseOS/x86_64/os/

Spring Data Redis

启动指令 redis-server.exe redis.windows.conf 1.导入Spring Data Redis的maven坐标 在pom.xml中添加依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependen…

通过String字符生成base64编码在生成图片

* base64转图片 //对字节数组字符串进行Base64解码并生成图片 * param base64str base64码 * return // param savePath 图片路径private static final String savePath"image_ver\\verifyCode"; 判断是否为base64编码 public static void mainDD…

【JavaEE初阶】Servlet (三)MessageWall

在我们之前博客中写到的留言墙页面,有很严重的问题:(留言墙博客) 如果刷新页面/关闭页面重开,之前输入的消息就不见了.如果一个机器上输入了数据,第二个机器上是看不到的. 针对以上问题,我们的解决思如如下: 让服务器来存储用户提交的数据,由服务器保存. 当有新的浏览器打开页…

基于java的坦克大战游戏的设计与实现--答辨PPT--【毕业论文】

文章目录 本系列校训毕设的技术铺垫PPT主体层次封面页目录页&#xff1a;设计工具与相关技术&#xff1a;系统分析总体设计&#xff1a;详细设计测试结论&#xff1a; 小技巧 本系列校训 互相伤害互相卷&#xff0c;玩命学习要你管&#xff0c;天生我才必有用&#xff0c;我命…

React(1)——快速入门

一、React背景简介 官网和资料 英文官网: https://reactjs.org/中文官网: 快速入门 – React (docschina.org) 3、如果JS基础忘了及时查看文档&#xff1a;JavaScript - 学习 Web 开发 |多核 (mozilla.org) JavaScript - 标签 - 汤姆大叔 - 博客园 (cnblogs.com) 4、React…

Neo4j图数据基本操作

Neo4j 文章目录 Neo4jCQL结点和关系增删改查匹配语句 根据标签匹配节点根据标签和属性匹配节点删除导入数据目前的问题菜谱解决的问题 命令行窗口 neo4j.bat console 导入rdf格式的文件 :GET /rdf/ping CALL n10s.graphconfig.init(); //初始化 call n10s.rdf.import.fetch(&q…

【软件测试】webdriver常用API演示(Java+IDEA+chrome浏览器)

1.元素定位方法 对象的定位应该是自动化测试的核心&#xff0c;要想操作一个对象&#xff0c;首先应该识别这个对象。一个对象就是一个人一样&#xff0c;他会有各种的特征&#xff08;属性&#xff09;&#xff0c;如比我们可以通过一个人的身份证号&#xff0c;姓名&#xf…

在CSDN学Golang云原生(监控解决方案Prometheus)

一&#xff0c;记录规则配置 在golang云原生中&#xff0c;通常使用日志库记录应用程序的日志。其中比较常见的有logrus、zap等日志库。这些库一般支持自定义的输出格式和级别&#xff0c;可以根据需要进行配置。 对于云原生应用程序&#xff0c;我们通常会采用容器化技术将其…

cmake stm32 模板

文件结构 ├─.vscode ├─build ├─cmake ├─Drivers │ ├─CMSIS │ │ ├─Device │ │ │ └─ST │ │ │ └─STM32F1xx │ │ │ ├─Include │ │ │ └─Source │ │ │ └─Templates │ │ └─Include │ └─STM32F1xx_HAL_Driver │ ├─Inc │ │ └─Leg…

Redis 笔记,基本数据类型、持久化、主从、集群等等问题

标题 &#x1f600;&#x1f600;&#x1f600;创作不易&#xff0c;各位看官点赞收藏. 文章目录 标题Redis 基础笔记1、安装及环境搭建2、Redis 数据类型2.1、String2.2、List2.3、Hash2.4、Set2.5、Zset2.6、BitMap2.7、HyperLogLog2.8、Geospatial2.9、Stream 3、Redis 持久…

「BLIP 微调指南」以 Image-Text Captioning 任务为例

前言&#xff1a;近日需要用到 BLIP 微调下游任务&#xff0c;搜索发觉如今并无 BLIP 微调教程&#xff0c;下面就以 Image-Text Captioning 任务为例&#xff0c;演示如何完成 BLIP 模型在自己数据集上的微调。 目录 1. BLIP 介绍2. 关键代码定位3. 关键参数赋值4. 模型定义&a…

HTML一些基础知识

1、Web标准&#xff1a;主要包含结构、表现、行为。结构用于对网页元素进行整理和分类&#xff0c;主要指HTML。表现用于设置网页元素的板式、颜色、大小等外观样式&#xff0c;主要指的是CSS。行为主要指的是网页模型的定义以及交互的编写&#xff0c;主要是js文件。 Html相当…

DAY1,Qt [ 手动实现登录框(信息调试类,按钮类,行编辑器类,标签类的使用)]

1.手动实现登录框&#xff1b; ---mychat.h---头文件 #ifndef MYCHAT_H #define MYCHAT_H#include <QWidget> #include <QDebug> //打印信息 #include <QIcon> //图标 #include <QPushButton> //按钮 #include <QLineEdit> //行编辑器类 #in…

尚硅谷大数据项目《在线教育之采集系统》笔记002

视频地址&#xff1a;尚硅谷大数据项目《在线教育之采集系统》_哔哩哔哩_bilibili 目录 P032 P033 P033 P034 P035 P036 P032 P033 # 1、定义组件&#xff0c;为各组件命名 a1.sources r1 a1.channels c1 a1.sinks - k1# 2、配置sources&#xff0c;描述source a1.sour…

微服务划分的原则

微服务的划分 微服务的划分要保证的原则 单一职责原则 1、耦合性也称块间联系。指软件系统结构中各模块间相互联系紧密程度的一种度量。模块之间联系越紧密&#xff0c;其耦合性就越强&#xff0c;模块的独立性则越差。模块间耦合高低取决于模块间接口的复杂性、调用的方式及…

hive删除数据进行恢复

在实际开发或生产中&#xff0c;hive表如果被误删&#xff0c;如被truncate或是分区表的分区被误删了&#xff0c;只要在回收站的清空周期内&#xff0c;是可以恢复数据的&#xff0c;步骤如下&#xff1a; &#xff08;1&#xff09; 先找到被删除数据的存放目录&#xff0c;…

Neo4j数据库中导入CSV示例数据

本文简要介绍Neo4j数据库以及如何从CSV文件中导入示例数据&#xff0c;方便我们快速学习测试图数据库。首先介绍简单数据模型以及基本图查询概念&#xff0c;然后通过LOAD CSV命令导入数据&#xff0c;生成节点和关系。 环境准备 读者可以快速安装Neo4j Desktop&#xff0c;启…

30天python速成-第一天(python简介及下载安装)

初识Python Python简介 Python的历史 1989年圣诞节:Guido von Rossum开始写Python语言的编译器。1991年2月:第一个Python编译器(同时也是解释器)诞生,它是用C语言实现的(后面),可以调用C语言的库函数。在最早的版本中,Python已经提供了对“类”,“函数”,“异常处…