图像二值化阈值调整——Triangle算法,Maxentropy方法

一. Triangle方法

算法描述:三角法求分割阈值最早见于Zack的论文《Automatic measurement of sister chromatid exchange frequency》主要是用于染色体的研究,该方法是使用直方图数据,基于纯几何方法来寻找最佳阈值,它的成立条件是假设直方图最大波峰在靠近最亮的一侧,然后通过三角形求得最大直线距离,根据最大直线距离对应的直方图灰度等级即为分割阈值,图示如下:

三角几何化的过程。首先找到直方图中灰度值最高的一点并判别亮暗,然后找到最左边点,两点连接一条直线,求直方图上离直线最远的点,设置该点的灰度值为阈值。

有时候最大波峰对应位置不在直方图最亮一侧,而在暗的一侧,这样就需要翻转直方图,翻转之后求得值,用255减去即得到为阈值T。扩展情况的直方图表示如下:

算法特点:适用于单峰。这点和OTSU算法有很大区别,OTSU适用于双峰。

cv2中有三角分割的算法,直接使用即可。

import cv2
import matplotlib.pylab as pltdef main():img = cv2.imread('6.jpg', 0)ret, thresh1 = cv2.threshold(img, 0, 255, cv2.THRESH_TRIANGLE)print(ret)  # 结果是151.0titles = ['Original Image', 'After Binarization']images = [img, thresh1]for i in range(2):plt.subplot(1, 2, i + 1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main()

二. Maxentropy方法

最大熵阈值分割法和OTSU算法类似,假设将图像分为背景和前景两个部分。熵代表信息量,图像信息量越大,熵就越大,最大熵算法就是找出一个最佳阈值使得背景与前景两个部分熵之和最大。

给定一个大小为M*N的图像,直方图中所有矩形框所代表的数值之和,即为图像中的像素数量,设像素值i的像素在图中有h(i)个,即:

\sum_{i=0}^{K-1}h(i)=MN

相对应的归一化直方图表示为:

p(i)=\frac{h(i)}{MN}

其中0<=i<K。通常被解释为一个随机过程的概率分布或概率密度函数,p(i)表示的是图像中像素灰度值为i所出现的概率。i的累积概率值为1,即概率分布p必须满足以下关系:

\sum_{i=0}^{K-1}p(i)=1

与累积概率所对应的累积直方图H是一个离散的分布函数P()(通常也称为累积分布函数或cdf),P(i)表示像素值小于等于i的概率:

P(i)=\sum_{j=0}^{i}p(j)

在图像处理中,灰度图的熵定义如下:

Entropy=-\sum_{i=0}^{K-1}p(i)log_2p(i)

因为p(i)\in \left [ 0,1 \right ],所以log_2p(i)<0,-log_2p(i)>0

利用图像熵为准则进行图像分割有一定历史了,学者们提出了许多以图像熵为基础进行图像分割的方法。以下介绍一种由Kapuret al提出来,现在仍然使用较广的一种图像熵分割方法。

给定一个特定的阈值q(0<=q<K-1),对于该阈值所分割的两个图像区域C0,C1,这两部分的熵可写为:

H(0)=- \sum_{i=0}^{q}\frac{p(i)}{P_0(q)}log_2\frac{p(i)}{P_0(q)}

H(1)=- \sum_{i=q+1}^{K-1}\frac{p(i)}{P_1(q)}log_2\frac{p(i)}{P_1(q)}

其中:P_0(q)=\sum_{i=0}^{q}p(i)P_1(q)=\sum_{i=q+1}^{K-1}p(i)P_0(q)+P_1(q)=1

图像总熵为:H_q=H(0)+H(1)现在就是要遍历q(0<=q<K-1),使得Hq最大。

为了计算方便,对H(0)和H(1)的表达式进行优化:

H(0)=- \sum_{i=0}^{q}\frac{p(i)}{P_0(q)}\left ( log_2p(i)-log_2P_0(q) \right ) =-\frac{1}{P_0(q)}[\sum_{i=0}^{q}p(i)log_2p(i)-log_2P_0(q)\sum_{i=0}^{q}p(i)]

得到H(0)=\frac{1}{P_0(q)}S_0(q)+log_2P_0(q)

同理H(1)=\frac{1}{P_1(q)}S_1(q)+log_2P_1(q)

其中S_0(q)=-\sum_{i=0}^{q}p(i)log_2p(i)S_1(q)=-\sum_{i=q+1}^{K-1}p(i)log_2p(i)

import cv2
import matplotlib.pylab as plt
import numpy as np
import mathdef calcGrayHist(image):rows, cols = image.shape[:2]grayHist = np.zeros([256], np.uint64)for row in range(rows):for col in range(cols):grayHist[image[row][col]] += 1return grayHistdef thresh_entropy(image):rows, cols = image.shape# 求灰度直方图grayHist = calcGrayHist(image)# 归一化灰度直方图,即概率直方图normGrayHist = grayHist / float(rows*cols)  # 就是上面讲的p(i)# 1.计算累加直方图zeroCumuMoment = np.zeros([256], np.float32) # 就是上面讲的P(i)for i in range(256):if i == 0:zeroCumuMoment[i] = normGrayHist[i]else:zeroCumuMoment[i] = zeroCumuMoment[i-1] + normGrayHist[i]# 2.计算各个灰度级的熵entropy = np.zeros([256], np.float32)  # 就是上面讲的S_0(q)for i in range(256):if i == 0:if normGrayHist[i] == 0:  # 0log2_0是0,但是对数在0处没有定义entropy[i] = 0else:entropy[i] = -normGrayHist[i] * math.log2(normGrayHist[i])else:if normGrayHist[i] == 0:entropy[i] = entropy[i-1] # 0log2_0是0,但是对数在0处没有定义else:entropy[i] = entropy[i-1] - normGrayHist[i] * math.log2(normGrayHist[i])# 3.找阈值fT = np.zeros([256], np.float32)ft1, ft2 = 0.0, 0.0totalEntropy = entropy[255]for i in range(255):# 找最大值ft1 = entropy[i] / zeroCumuMoment[i] + math.log2(zeroCumuMoment[i])ft2 = (entropy[255] - entropy[i]) / (1 - zeroCumuMoment[i]) + math.log2(1 - zeroCumuMoment[i])fT[i] = ft1 + ft2# 找最大值的索引,作为得到的阈值print(fT)threshLoc = np.where(fT == np.max(fT))thresh = threshLoc[0][0]# 阈值处理threshold = np.copy(image)threshold[threshold>thresh] = 255threshold[threshold<=thresh] = 0return thresh, thresholddef main():img = cv2.imread("6.jpg", 0)thresh, threshImg = thresh_entropy(img)print(thresh) # 结果是104.0titles = ['Original Image', 'After Binarization']images = [img, threshImg]for i in range(2):plt.subplot(1, 2, i + 1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/136865.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AI】自回归 (AR) 模型使预测和深度学习变得简单

自回归 (AR) 模型是统计和时间序列模型&#xff0c;用于根据数据点的先前值进行分析和预测。这些模型广泛应用于各个领域&#xff0c;包括经济、金融、信号处理和自然语言处理。 自回归模型假设给定时间变量的值与其过去的值线性相关&#xff0c;这使得它们可用于建模和预测时…

Oracle11g for centos7

准备工作 x86 centos7 oracle11G 环境搭建 配置好虚拟机&#xff0c;网络通畅&#xff0c;建议最少3G内存。 安装依赖 yum install binutils compat-libstdc-33 glibc* ksh gcc gcc-c libgcc libstdc* libaio libaio-devel libXext libX11 libXau libxcb libXi make sy…

蓝桥杯每日一题2023.11.8

题目描述 题目分析 对于输入的abc我们可以以a为年也可以以c为年&#xff0c;将abc,cab,cba这三种情况进行判断合法性即可&#xff0c;注意需要排序去重&#xff0c;所以考虑使用set 此处为纯模拟的写法&#xff0c;但使用循环代码会更加简洁。 方法一&#xff1a; #include&…

Vue中el-table条件渲染防止样式乱掉

<el-table ref"table" :header-cell-style"{background: rgba(222, 222, 222, 1), color: #909399}" v-loading"" stripe border :data"" element-loading-text"加载中..." :row-style"{height: 40px}" :cell-…

【MongoDB-Redis-MySQL-Elasticsearch-Kibana-RabbitMQ-MinIO】Java全栈开发软件一网打尽

“Java全栈开发一网打尽&#xff1a;在Windows环境下探索技术世界的奇妙之旅” 前言 全栈开发是一项复杂而令人兴奋的任务&#xff0c;涵盖了从前端到后端、数据库到可视化层、消息队列到文件存储的广泛领域。本文将带您深入探讨在Windows环境下进行全栈开发的过程&#xff0…

求2个字符串的最短编辑距离 java 实现

EditStepInfo.java&#xff1a; import lombok.Getter; import lombok.Setter;import java.io.Serializable; import java.util.List;Getter Setter public class EditStepInfo implements Serializable {private String str1;private String str2;// str1和 str2 的最短编辑路…

基于PowerWord的储能在主动配电网中的仿真研究

摘要 主动配电网是智能配电网技术发展的高级阶段&#xff0c;分布式储能是主动配电网的重要组成部分&#xff0c;分布式储能的应用对主动配电网的规划、运行、网络拓扑、故障处理和保护、可再生能源电源的协调优化等方面带来不容忽视的影响&#xff0c;针对这一现状&#xff0c…

Kafka JNDI 注入分析(CVE-2023-25194)

Apache Kafka Clients Jndi Injection 漏洞描述 Apache Kafka 是一个分布式数据流处理平台&#xff0c;可以实时发布、订阅、存储和处理数据流。Kafka Connect 是一种用于在 kafka 和其他系统之间可扩展、可靠的流式传输数据的工具。攻击者可以利用基于 SASL JAAS 配置和 SAS…

UNIAPP框架中使用BLE蓝牙连接

概述 蓝牙连接包括搜索蓝牙设备&#xff0c;选择蓝牙设备&#xff0c;监听设备特征值&#xff0c;发送命令&#xff0c;断开蓝牙连接5种基础方法。Uni-App BLE 文档地址搜索设备时 搜索蓝牙设备 function discoveryDevices(pushDevice){console.log(enter search ble blueto…

02-PostgreSQL的基本使用

一、数据库操作 ①: 登录到数据库 psql -U postgres -d postgres -h 127.0.0.1②:查看所有数据库 \l③: 创建数据库 # 创建一个名为 mydb 的数据库 create database mydb;④:切换数据库 # \c 数据库名 \c mydb⑤:删除数据库 # 删除前 先确保数据库没有被连接 drop databa…

Linux学习笔记之五(父子进程、孤儿进程、僵尸进程、守护进程)

Linux 1、进程1.1、进程的六种状态1.2、创建子进程1.3、添加子进程任务1.4、孤儿进程、僵尸进程、守护进程1.4.1、避免僵尸进程1.4.2、创建守护进程1.4.3、杀死守护进程 1.5、综合练习 1、进程 进程可以简单的理解为一个正在执行的程序&#xff0c;它是计算机系统中拥有资源和…

小红书母婴博主投放技巧是什么,怎么避免无用功

如今&#xff0c;随着互联网的发展&#xff0c;母婴博主和社交媒体成为了很多妈妈们&#xff0c;获取育儿知识和建立社交圈的重要途径。今天为大家分享下小红书母婴博主投放技巧是什么&#xff0c;怎么避免无用功&#xff01; 一、优质的母婴博主在哪里 我们都知道&#xff0c;…

数据中台之数据分析

效果界面 技术方案 Notebook集成 在您的数据平台上,创建一个能够与Jupyter Notebook通讯的服务。通过Jupyter Notebook的HTTP API与Notebook实例进行交互,执行代码、获取输出等。用户界面 在数据开发/数据分析的代码框右上方,添加一个机器人样式的图标,用户点击后可以调起…

verdi如何打开时可以加载配置比如字体

打开tcl使能 找到配置字体的命令 其实其他有需要的文件配置都可以在这里找到对应的指令 存储文件 新建verdi001.tcl文件 输入想要调整的字体以及大小 verdiSetFont -font "Bitstream Vera Sans" -size "18" verdiSetFont -monoFont "Courier&q…

CPU眼里的 class vs struct

转自微信公众号《阿布编程》 “我们能用C语言实现C的&#xff1a;继承、成员函数、虚函数吗&#xff1f;不仅可以&#xff0c;而且还一摸一样&#xff01;” 01 — 提出问题 说到C和C的差别&#xff0c;大家很容易联想到面向对象和面向过程的差异。毕竟类&#xff0c;也就是…

Java @NotBlank反射校验

在实际项目中&#xff0c;遇到了导入数据校验是否为空的情况&#xff0c;只使用Javax的NotBlank注解并没有什么用&#xff0c;还需要使用工具类校验&#xff0c;具体代码如下&#xff1a; pojo代码如下&#xff1a; import com.alibaba.excel.annotation.ExcelIgnore; import …

多篇论文介绍-摘要

论文地址https://arxiv.org/pdf/2301.10051.pdf 目录 01CIEFRNet&#xff1a;面向高速公路的抛洒物检测算法 02改进 YOLOv5 的 PDC 钻头复合片缺损识别 03 基于SimAM注意力机制的DCN-YOLOv5水下目标检测 04 基于改进YOLOv7-tiny 算法的输电线路螺栓缺销检测 ​编辑05 基于改进Y…

亚马逊鲲鹏系统能做什么

亚马逊鲲鹏系统是一款能绕过亚马逊智能检测&#xff0c;完全模拟人类真实行为&#xff0c;通过模拟真实的人流量来帮助你提升你的产品排名&#xff0c;让你的产品出现在搜索首页&#xff0c;从而快速提高你的销售业绩的营销工具&#xff01; 主要的功能有批量注册买家号、AI智能…

【原创学位论文】基于python和定向爬虫的商品比价系统.docx

基于python和定向爬虫的商品比价系统 Price Comparison System for Products Based on Python and Targeted Web Crawling 目录 目录 2 摘要 3 关键词 3 第一章 绪论 4 1.1 研究背景 4 1.2 研究意义 5 1.3 国内外研究现状 7 1.4 本文主要工作和章节安排 8 第二章 Python基础…

新生儿疝气:原因、科普和注意事项

引言&#xff1a; 新生儿疝气是一种在婴儿中相对较常见的状况&#xff0c;很多新父母可能对这一现象感到困惑和焦虑。疝气发生时&#xff0c;内腹腔的一部分可能穿过腹壁的弱点&#xff0c;导致腹部出现凸起。本文将科普新生儿疝气的原因&#xff0c;提供相关信息&#xff0c;…