动手学深度学习:1.线性回归从0开始实现

动手学深度学习:1.线性回归从0开始实现

    • 1.手动构造数据集
    • 2.小批量读取数据集
    • 3.初始化模型参数
    • 4.定义模型和损失函数
    • 5.小批量随机梯度下降更新
    • 6.训练
    • 完整代码


1.手动构造数据集

根据带有噪声的线性模型构造一个人造数据集,任务是使用这个有限样本的数据集来恢复这个模型的参数。

我们使用线性模型参数 w = [ 2 , − 3.4 ] T w = [2,−3.4]^T w=[2,3.4]T b = 4.2 b = 4.2 b=4.2 和噪声项 ϵ \epsilon ϵ 生成数据集及其标签:
y = X w + b + ϵ y = Xw + b + \epsilon y=Xw+b+ϵ

def synthetic_data(w, b, num_examples):"""生成y=Xw+b+噪声"""X = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape) # 加上均值为0,标准差为0.01的噪声return X, y.reshape((-1, 1))true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

features中的每一行都包含一个二维数据样本, labels中的每一行都包含一维标签值(一个标量)

print('features:', features[0],'\nlabel:', labels[0])
'''
features: tensor([ 0.2589, -0.6408]) 
label: tensor([6.8837])
'''

2.小批量读取数据集

定义一个函数, 该函数能打乱数据集中的样本并以小批量方式获取数据。下面的``data_iter函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size`的小批量。 每个小批量包含一组特征和标签。

def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))# 这些样本是随机读取的,没有特定的顺序random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]

直观感受一下小批量运算:读取第一个小批量数据样本并打印。 每个批量的特征维度显示批量大小和输入特征数。 同样的,批量的标签形状与batch_size相等。

batch_size = 10for X, y in data_iter(batch_size, features, labels):print(X, '\n', y)break'''
tensor([[ 0.9738,  0.9875],[-0.8015, -0.2927],[ 0.1745,  0.2918],[ 1.7484,  0.5768],[ 1.1637,  0.6903],[ 0.6840,  0.3671],[ 0.1465,  0.6662],[-1.8122,  0.4852],[ 1.0590, -0.0379],[-0.9164, -0.4059]]) tensor([[ 2.7853],[ 3.5814],[ 3.5564],[ 5.7416],[ 4.1774],[ 4.3218],[ 2.1962],[-1.0674],[ 6.4454],[ 3.7395]])
'''

3.初始化模型参数

通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

在初始化参数之后,我们的任务是更新这些参数,直到这些参数足够拟合我们的数据。 每次更新都需要计算损失函数关于模型参数的梯度。 有了这个梯度,我们就可以向减小损失的方向更新每个参数。

4.定义模型和损失函数

我们必须定义模型,将模型的输入和参数同模型的输出关联起来。要计算线性模型的输出, 我们只需计算输入特征 X X X 和模型权重 w w w 的矩阵-向量乘法后加上偏置 b b b。注意,上面的 X w Xw Xw 是一个向量,而 b b b 是一个标量,由于广播机制: 当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。

def linreg(X, w, b):"""线性回归模型"""return torch.matmul(X, w) + b

因为需要计算损失函数的梯度,所以我们应该先定义损失函数。这里使用平方损失函数。

def squared_loss(y_hat, y): """均方损失"""return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

5.小批量随机梯度下降更新

小批量随机梯度下降在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。接下来,朝着减少损失的方向更新我们的参数。

下面的函数实现小批量随机梯度下降更新。 该函数接受模型参数集合、学习速率和批量大小作为输入。

因为我们计算的损失是一个批量样本的总和,所以我们用批量大小(batch_size) 来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

def sgd(params, lr, batch_size):"""小批量随机梯度下降"""with torch.no_grad():for param in params: # [w,b]param -= lr * param.grad / batch_sizeparam.grad.zero_()

6.训练

在每次迭代中,我们读取一小批量训练样本,并通过我们的模型来获得一组预测。 计算完损失后,我们开始反向传播,存储每个参数的梯度。 最后,我们调用优化算法sgd来更新模型参数。

在每个迭代周期(epoch)中,我们使用data_iter函数遍历整个数据集, 并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。 这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设为3和0.03。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y)  # X和y小批量损失# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,# 并以此计算关于[w,b]的梯度l.sum().backward()sgd([w, b], lr, batch_size)  # 使用梯度更新参数with torch.no_grad():  # 查看整体损失值是否下降train_l = loss(net(features, w, b), labels)print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')'''
epoch 1, loss 0.039035
epoch 2, loss 0.000149
epoch 3, loss 0.000050
'''

通过比较真实参数和通过训练学到的参数来评估训练的成功程度:

print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')
'''
w的估计误差: tensor([ 0.0006, -0.0011], grad_fn=<SubBackward0>)
b的估计误差: tensor([0.0007], grad_fn=<RsubBackward1>)
'''

完整代码

import random
import torch# 1.人为构造数据集
def synthetic_data(w, b, num_examples):"""生成y=Xw+b+噪声"""X = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape)return X, y.reshape((-1, 1))true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
print('features:', features[0], '\nlabel:', labels[0])# 2.读取数据集
def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]batch_size = 10
for X, y in data_iter(batch_size, features, labels):print(X, '\n', y)break# 3.初始化权重和偏置
w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)# 4.定义模型定义模型和模型
def linreg(X, w, b):"""线性回归模型"""return torch.matmul(X, w) + b# 5.定义损失函数
def squared_loss(y_hat, y):"""均方损失"""return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2# 6.定义优化算法
def sgd(params, lr, batch_size):"""小批量随机梯度下降"""with torch.no_grad():for param in params:param -= lr * param.grad / batch_sizeparam.grad.zero_()# 7.训练
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y)  # X和y小批量损失# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,# 并以此计算关于[w,b]的梯度l.sum().backward() # 求损失函数对参数sgd([w, b], lr, batch_size)  # 使用梯度更新参数with torch.no_grad():  # 查看整体损失值是否下降train_l = loss(net(features, w, b), labels)print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/130033.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

692. 前k个高频单词(map)

目录 一、题目 二、代码 一、题目 692. 前K个高频单词 - 力扣&#xff08;LeetCode&#xff09; 二、代码 class Solution {class KV_sort{public:bool operator()(const pair<string,int> kv1, const pair<string,int> kv2){if(kv1.first kv2.first )//两个对…

C51--项目--感应开关盖垃圾桶

1、项目概述 功能描述&#xff1a; 检测靠近时&#xff0c;垃圾桶自动开盖并伴随滴一声&#xff0c;2s后关盖。 发生震动时&#xff0c;垃圾桶自动开盖并伴随滴一声&#xff0c;2s后关盖。 按下按键时&#xff0c;垃圾桶自动开盖并伴随滴一声&#xff0c;2s后关盖。 硬件说明…

Flutter笔记:发布一个模块 scale_design - (移动端)设计师尺寸适配工具

Flutter笔记 发布一个模块scale_design设计师尺寸适配工具与常用组件库 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/a…

UE5C++学习(一)--- 增强输入系统

一、关于增强输入系统的介绍 增强输入系统官方文档介绍 二、增强输入系统的具体使用 注&#xff1a;在使用方面&#xff0c;不会介绍如何创建项目等基础操作&#xff0c;如果还没有UE的使用基础&#xff0c;可以参考一下我之前UE4的文章&#xff0c;操作差别不会很大。 如上…

HIT_OS_LAB2 调试分析 Linux 0.00 多任务切换

操作系统实验二 2.1 实验目的 通过调试一个简单的多任务内核实例&#xff0c;使大家可以熟练的掌握调试系统内核的方法&#xff1b;掌握Bochs虚拟机的调试技巧&#xff1b;通过调试和记录&#xff0c;理解操作系统及应用程序在内存中是如何进行分配与管理的&#xff1b; 2.2…

配置OpenCV

Open CV中包含很多图像处理的算法&#xff0c;因此学会正确使用Open CV也是人脸识别研究的一项重要工作。在 VS2017中应用Open CV&#xff0c;需要进行手动配置&#xff0c;下面给出在VS2017中配置Open CV的详细步骤。 1.下载并安装OpenCV3.4.1与VS2017的软件。 2.配置Open CV环…

经典文献阅读之--DLIO(基于连续时间运动校正的轻量级激光雷达惯性导航系统)

0. 简介 一般来说&#xff0c;当系统经过不规则的地形时候&#xff0c;机器人自身会存在激烈运动会导致激光雷达扫描中的运动畸变&#xff0c;从而可能降低状态估计和建图的精度。虽然已经有一些方法用于缓解这种影响&#xff0c;但它们仍然过于简单或计算成本过高&#xff0c…

01-单节点部署clickhouse及简单使用

1、下载rpm安装包&#xff1a; 官网&#xff1a;https://packages.clickhouse.com/rpm/stable/ clickhouse19.4版本之后只需下载3个rpm安装包&#xff0c;上传到节点目录即可 2、rpm包安装&#xff1a; 安装顺序为conmon->server->client 执行 rpm -ivh ./clickhouse-…

美团面试:Redis 除了缓存还能做什么?可以做消息队列吗?

这是一道面试中常见的 Redis 基础面试题,主要考察求职者对于 Redis 应用场景的了解。 即使不准备面试也建议看看,实际开发中也能够用到。 内容概览: Redis 除了做缓存,还能做什么? 分布式锁:通过 Redis 来做分布式锁是一种比较常见的方式。通常情况下,我们都是基于 Re…

JMeter的使用——傻瓜式学习【下】

目录 前言 1、自动录制脚本 1.1、原理 1.2、JMeter脚本录制 2、JMeter直连数据库 2.1、直连数据库的作用 2.2、JMeter直连数据库的步骤 案例&#xff1a; 3、JMeter的逻辑控制器 3.1、if控制器 案例&#xff1a; 3.2、循环控制器 案例&#xff1a; 3.3、ForEach控…

22吉林大学软件需求分析与规范(Software Requirements Analysis Specification)

写在前面&#xff1a; 4w多字笔记&#xff0c;可能显示有问题&#xff0c;带图片完整pdf版暂定10r一份&#xff0c;需要的同学可以加wx:fanaobo&#xff0c;备注软件需求笔记。 chapter 0 课程简介 课程简介&#xff1a; ◼ 软件工程专业核心课程之一 ◼ 软件工程课程体系最…

大数据毕业设计选题推荐-热门旅游景点数据分析-Hadoop-Spark-Hive

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

基于蜜獾算法的无人机航迹规划-附代码

基于蜜獾算法的无人机航迹规划 文章目录 基于蜜獾算法的无人机航迹规划1.蜜獾搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用蜜獾算法来优化无人机航迹规划。 1.蜜獾搜索算法 …

HTTPS的加密方式超详细解读

在了解https的加密方式之前&#xff0c;我们需要先行了解两个特别经典的传统加密方式&#xff1a; 1、对称加密 1.1、定义 需要对加密和解密使用相同密钥的加密算法。所谓对称&#xff0c;就是采用这种加密方法的双方使用方式用同样的密钥进行加密和解密。密钥是控制加密及解…

二叉树采用二叉链表存储:编写计算二叉树最大宽度的算法(二叉树的最大宽度是指二叉树所有层中结点个数的最大值)

二叉树采用二叉链表存储&#xff1a;编写计算二叉树最大宽度的算法 &#xff08;二叉树的最大宽度是指二叉树所有层中结点个数的最大值&#xff09; 和二叉树有关的代码&#xff0c;基本都逃不过“先中后层”&#xff0c;这四种遍历 而我们这里是让你计算最大宽度&#xff0c…

如何使用Selenium处理Cookie,今天彻底学会了

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

判断是否工作在docker环境

判断是否工作在docker环境 方式一&#xff1a;判断根目录下 .dockerenv 文件 docker环境下&#xff1a;ls -alh /.dockerenv , 非docker环境&#xff0c;没有这个.dockerenv文件的 注&#xff1a;定制化比较高的docker系统也可能没有这个文件 方式二&#xff1a;查询系统进程…

【Linux】Nignx的入门使用负载均衡动静分离(前后端项目部署)---超详细

一&#xff0c;Nignx入门 1.1 Nignx是什么 Nginx是一个高性能的开源Web服务器和反向代理服务器。它使用事件驱动的异步框架&#xff0c;可同时处理大量请求&#xff0c;支持负载均衡、反向代理、HTTP缓存等常见Web服务场景。Nginx可以作为一个前端的Web服务器&#xff0c;也可…

VUE2和VUE3思维导图知识体系总结大对比

VUE2知识体系 VUE3知识体系 思维导图原件下载地址