通用语——基于实体感知的机器翻译方法,用于知识图谱上的问答

原文:towardsdatascience.com/lingua-franca-entity-aware-machine-translation-approach-for-question-answering-over-knowledge-e2c7e481c870?source=collection_archive---------12-----------------------#2024-01-29

朝着知识图谱问答系统的通用语发展

https://perevalov.medium.com/?source=post_page---byline--e2c7e481c870--------------------------------https://towardsdatascience.com/?source=post_page---byline--e2c7e481c870-------------------------------- Aleksandr Perevalov

·发表于 Towards Data Science ·阅读时间 7 分钟·2024 年 1 月 29 日

TLDR

机器翻译(MT)可以增强现有的问答(QA)系统,这些系统的语言能力有限,通过使其支持多种语言来提高其功能。然而,机器翻译有一个主要缺点——它通常在翻译那些不能逐字翻译的命名实体时失败。例如,电影《教皇必须死》的德语片名是“Ein Papst zum Küssen”,其字面翻译是:“一个待吻的教皇”。由于命名实体的正确性对问答系统至关重要,因此必须妥善处理这一挑战。在本文中,我们提出了一种名为“Lingua Franca”的实体感知机器翻译方法。它利用知识图谱中的信息来确保命名实体翻译的准确性。没错,它能有效工作!

挑战

实现高质量的翻译在很大程度上依赖于准确翻译句子中的命名实体(NE)。已经提出了各种方法来增强命名实体的翻译,包括集成知识图谱(KG)来改善实体翻译的方法,这些方法承认实体在整体翻译质量中的关键作用,特别是在问答系统的上下文中。值得注意的是,命名实体翻译的质量并不是一个孤立的目标;它对涉及信息检索(IR)或基于知识图谱的问答(KGQA)等任务的系统有更广泛的影响。本文将深入讨论机器翻译(MT)和基于知识图谱的问答(KGQA)。

KGQA 系统的重要性在于它们能够基于结构化数据为用户提供事实性答案(见下图)。

https://github.com/OpenDocCN/towardsdatascience-blog-zh-2024/raw/master/docs/img/caae9e2754d21389606f63bb4c355ea6.png

Google 直接回答功能的截图(由作者提供)

KGQA 系统是现代搜索引擎的核心组件,使其能够为用户提供直接答案(Google 搜索,截图由作者提供)。

此外,多语言 KGQA 系统在解决 Web 上的“数字语言鸿沟”中发挥着至关重要的作用。例如,涉及德国的 Wikipedia 文章,特别是与城市或人物相关的文章,其中包含的信息在德语中的比例高于其他语言——这种信息不平衡可以通过多语言 KGQA 系统加以处理,顺便说一句,该系统是所有现代搜索引擎的核心。

使 KGQA 系统能够用不同语言回答问题的选项之一是使用机器翻译(MT)。然而,现成的 MT 在翻译命名实体(NEs)时面临显著挑战,因为许多实体无法直接翻译,需要背景知识才能准确解读。例如,考虑电影《教皇必须死》的德语片名,“Ein Papst zum Küssen”。字面翻译为“一个待吻的教皇”,这突显了超越简单翻译方法的上下文理解需求。

鉴于传统机器翻译方法在翻译实体时的局限性,将 KGQA 系统与机器翻译相结合通常会导致命名实体失真,显著降低准确回答问题的可能性。因此,需要一种增强的方法,将多语言背景知识整合到命名实体中。

我们的方法

本文介绍并实现了 一种新的命名实体感知机器翻译(NEAMT)方法,旨在增强 KGQA 系统的多语言能力。NEAMT 的核心概念是通过结合知识图谱(例如 Wikidata 和 DBpedia)中的信息来提升机器翻译的质量。这是通过使用“实体替换”技术实现的。

作为评估数据,我们使用了 QALD-9-plus 和 QALD-10 数据集。然后,我们使用 NEAMT 框架中的多个组件,这些组件可在我们的 仓库 中获取。最后,该方法在两个 KGQA 系统上进行了评估:QAnswer 和 Qanary。该方法的详细描述请参见下图。

https://github.com/OpenDocCN/towardsdatascience-blog-zh-2024/raw/master/docs/img/d81a519a5003f291a80df6099cf155ee.png

KGQA 过程中的 Lingua Franca 方法概述(图由作者提供)

从本质上讲,我们的方法在翻译过程中使用实体替换技术保留已知的命名实体。随后,这些实体会被从知识图谱中提取出的相应标签替换为目标翻译语言中的标签。这个细致的过程确保了问题在 KGQA 系统回答之前的精确翻译。

根据我们之前的文章的见解,我们将英语指定为共同的目标翻译语言,从而将我们的方法命名为“Lingua Franca”(灵感来自于“桥梁”或“联结”语言的含义)。需要特别指出的是,我们的框架具有多功能性,可以无缝地适应任何其他语言作为目标语言。重要的是,Lingua Franca 不仅限于 KGQA 的范畴,还可以应用于各种面向实体的搜索应用。

Lingua Franca 方法包括三个主要步骤:(1)命名实体识别(NER)和命名实体链接(NEL),(2)基于已识别命名实体应用实体替换技术,(3)利用机器翻译工具生成目标语言文本,同时考虑前述步骤中的信息。在这里,英语始终作为目标语言,与相关研究一致,认为这是问答(QA)质量的最优策略。然而,该方法不限于英语,如有需要,可以使用其他语言。

该方法作为开源框架实现,允许用户通过集成自定义的 NER、NEL 和 MT 组件来构建自己的命名实体感知机器翻译(NEAMT)管道(请参见我们的GitHub)。Lingua Franca 方法在所有设置下的详细信息在下面的示例中进行了说明,如下图所示。

https://github.com/OpenDocCN/towardsdatascience-blog-zh-2024/raw/master/docs/img/c85f6e934a700faeaabeec33c9989fb5.png

Lingua Franca 方法在多个设置下的详细表示(作者提供的图示)

本研究的实验结果强烈支持 Lingua Franca 在与 KGQA 系统结合时优于标准机器翻译工具的观点。

实验结果

在评估每个实体替换设置时,计算了通过机器翻译工具处理后占位符或命名实体标签的损坏率。该比率作为该方法相关管道中实际命名实体翻译质量的指标。更新后的统计数据如下:

因此,通过我们的方法,我们可以自信地断言,在文本中识别的 NEs 中,最多有 97.11%(设置 2)被正确翻译。

我们分析了关于 QA 质量的结果,同时考虑了以下实验组件:一种方法管道或标准 MT 工具、源语言和 KGQA 基准。下图展示了方法与标准 MT 的对比——这些结果可以被解释为一种消融研究。

https://github.com/OpenDocCN/towardsdatascience-blog-zh-2024/raw/master/docs/img/abbd8a04dc5e07a2024561c24cf57c03.png

我们实验的宏观 F1 得分分组柱状图(按作者)

分组柱状图展示了关于每种语言和拆分的宏观 F1 得分(使用Gerbil-QA获得的)。在消融研究的背景下,每组包含两根柱状条:第一根柱条属于我们提出的最佳方法,而第二根柱条反映了标准 MT 工具(基准)的表现。

我们观察到,在大多数实验案例中(24 个中的 19 个),使用我们方法的 KGQA 系统的表现超过了使用标准 MT 工具的 KGQA 系统。为了验证上述结论,我们对相同数据进行了 Wilcoxon 符号秩检验。基于检验结果(p 值 = 0.0008,α = 0.01),我们拒绝了零假设,该假设表示 QA 质量结果没有差异,即将 KGQA 与标准 MT 结合与将 KGQA 与我们的方法结合没有区别。因此,我们得出结论,依赖我们 NEAMT 框架的方法显著提高了在回答多语言问题时的 QA 质量,相比标准 MT 工具。

实验的可重复性通过重复实验并计算所有 QA 质量指标之间的 Pearson 相关系数来确保。结果的系数为 0.794,表示强相关与非常强相关之间的边界值。因此,我们假设我们的实验是可重复的。

结论

本文介绍了一种名为Lingua Franca的 NEAMT 方法。Lingua Franca 旨在增强多语言能力,并与标准机器翻译工具相比提高问答质量,它专为 KGQA 系统设计,目的是扩大其潜在用户范围。Lingua Franca 的实现和评估采用了作者开发的模块化 NEAMT 框架,详细信息可参见“实验”部分。本文的主要贡献包括:(1)据我们所知,首次将 NEAMT 方法(即 Lingua Franca)与 KGQA 结合;(2)提出了一个开源模块化 NEAMT 框架,使研究社区能够构建自己的机器翻译管道;(3)进行了一项全面的评估和消融研究,展示了 Lingua Franca 方法的有效性。

在未来的工作中,我们计划扩展实验设置,涵盖更广泛的语言、基准和 KGQA 系统。为了处理实体替换过程中的损坏占位符,我们计划使用这些数据对机器翻译模型进行微调。此外,我们还将进行更详细的错误分析,重点分析错误传播。

请不要忘记查看我们的完整研究论文以及GitHub 仓库。

致谢

本研究得到了德国联邦教育与研究部(BMBF)资助,资助编号为 01IS17046 和 01QE2056C,同时也得到了德国北莱茵-威斯特法伦州文化与科学部(MKW NRW)资助,资助编号为 NW21–059D。本研究还在 QA4CB 研究项目内获得资助,该项目旨在开发用于扩展聊天机器人框架的问答组件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1125960.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java 开发日记】我们来说一下 synchronized 与 ReentrantLock 的

【Java 开发日记】我们来说一下 synchronized 与 ReentrantLock 的二、详细区别分析 1. 实现层面 synchronized: Java 关键字,由 JVM 底层实现(通过 monitorenter/monitorexit 字节码指令)。 锁信息记录在对象头的 Mark Word 中。…

引导内存分配器 Buddy 分配器的关系

引导内存分配器 Buddy 分配器的关系 在 Linux 内核启动的早期阶段,物理内存管理面临着一个“鸡生蛋,蛋生鸡”的问题:内核需要分配内存来初始化用于内存管理的数据结构(如 struct page 数组),但此时完善的 B…

Buddy分配器

Buddy分配器 1. 内核在基本的伙伴分配器基础改进扩展 支持内存节点和区域,称为分区的伙伴分配器(zoned buddy allocator)。 为了预防内存碎片,把物理页框通过移动性分组。 针对分配单页做了性能优化,为了减少处理器锁的…

AI模型容器化部署实战

💓 博客主页:借口的CSDN主页 ⏩ 文章专栏:《热点资讯》 AI模型容器化部署:实战指南与未来展望目录AI模型容器化部署:实战指南与未来展望 引言 一、容器化部署的必要性与当前挑战 为什么需要容器化? 现存挑战…

Slab,不连续页,buddy分配器与内存映射

Slab分配器分析 一、Slab分配器概述 1.1 Slab分配器的作用 Slab分配器是Linux内核中用于管理小对象内存分配的高效机制。它主要解决以下问题: 频繁分配/释放小对象的性能问题:内核中大量使用固定大小的对象(如task_struct、inode、dentry等&a…

物理内存组织架构与Buddy分配器关系分析

物理内存组织架构与Buddy分配器关系分析 在Linux内核中,物理内存的管理是一个分层级的复杂系统。为了高效地应对不同硬件架构(如NUMA)和不同的内存需求(如DMA访问限制),Linux建立了严密的物理内存组织架构…

【数据分享】2025年全国范围各城市的公交路线及站点数据(分省/分城市)

本文分享一份2025年全国范围各城市的路线及站点数据。包含:安徽省、澳门、北京市、重庆市、福建省、甘肃省、广东省、广西省、贵州省、海南省、河北省、河南省、黑龙江、湖北省、湖南省、吉林省、江苏省、江西省、辽宁省、内蒙古、宁夏省、青海省、山东省、山西省、…

Agent2Agent (A2A) Protocol( A2A 协议)简介、组件

Agent2Agent (A2A) Protocol(简称 A2A 协议)是旨在让不同 AI 代理(agents)之间互联互通、协作的开放标准。内容包括协议的主要组件(building blocks)、各组件作用,以及这些组件在一个典型流程中…

期货反向跟单—从小白到高手进阶历程 六十三(研究人性不是重点)

在期货反向跟单领域,“研究人性” 似乎成了多数团队的共识性动作。不少团队投入大量人力、物力搭建心理干预体系,从资金奖惩机制到每日口头引导,试图通过干预盘手的心理状态来优化跟单效果。然而现实往往事与愿违,多数团队耗费数月…

系列教程十三 | 探索阿里云 Wan 2.1:零基础入门文本生成视频教程

一.背景介绍近年来,人工智能内容生成(AIGC)在视频创作领域取得了突破性进展,其中文本到视频(Text-to-Video)生成技术因其在内容创作、广告营销和教育可视化等方面的巨大潜力而备受关注。Wan 2.1作为阿里云推…

系列教程十四 | 基于CosyVoice 2.0实现语音风格迁移

一.背景介绍 随着生成式人工智能的快速发展,语音合成(Text-to-Speech, TTS)技术正在迈向更自然、更智能、更具情感表达的新时代。过去的 TTS 模型虽然已在音质和语义准确度方面取得显著进步,但在跨语言、情感表达、个性化模拟等方…

外包开发三年

外包开发的三年:困在代码牢笼里的日子这三年就像被困在一座没有出口的迷宫,每天重复着同样的路线,却永远走不到尽头。刚入行时还带着点期待,想着好歹能攒点经验,可现实像一盆冷水,从头顶浇到脚底。外包公司…

解析ASTM D4169:运输包装性能测试的核心标准有哪些

ASTM D4169 是国际公认的运输集装箱和系统性能测试标准,通过模拟真实分销环境中的各类危险元素,为包装运输性提供统一评估依据。该标准包含多个分配周期(DC),其中 DC4、DC6、DC12、DC13 是医疗行业界最常选用的周期&am…

提示工程的认知架构设计:架构师的深度思考

提示工程的认知架构设计:架构师的深度思考 引言:AI时代的认知革命 在人工智能技术迅猛发展的今天,提示工程(Prompt Engineering)已经从一项简单的交互技巧演变为一门系统的工程学科。作为架构师,我们需要超越表面的指令编写,深入思考提示工程背后的认知架构设计。这不仅…

Java Web 企业客户管理系统系统源码-SpringBoot2+Vue3+MyBatis-Plus+MySQL8.0【含文档】

摘要 随着信息技术的快速发展,企业客户管理系统的需求日益增长,传统的手工管理模式已无法满足现代企业对高效、精准客户管理的需求。企业客户管理系统能够有效整合客户信息,优化业务流程,提升客户满意度和企业竞争力。当前&#x…

网上超市设计与实现信息管理系统源码-SpringBoot后端+Vue前端+MySQL【可直接运行】

摘要 随着互联网技术的快速发展和电子商务的普及,网上超市逐渐成为消费者购物的主要渠道之一。传统的线下超市面临着租金成本高、管理效率低、客户覆盖面有限等问题,而网上超市能够突破时间和空间的限制,为消费者提供更加便捷的购物体验。同时…

Java SpringBoot+Vue3+MyBatis 在线文档管理系统系统源码|前后端分离+MySQL数据库

摘要 随着信息技术的快速发展,文档管理已成为企业和个人高效工作的核心需求。传统的文档管理方式依赖本地存储或简单的文件共享工具,存在版本混乱、协作效率低、安全性不足等问题。在线文档管理系统通过云端存储和实时协作功能,能够有效解决这…

大数据诊断性分析:从入门到精通的完整指南

大数据诊断性分析:从入门到精通的完整指南 一、引言:为什么你做了一堆报表,却还是找不到问题的根因? 你有没有过这样的经历? 月底盯着复购率下降20%的报表抓耳挠腮,翻了几十张用户行为折线图,…

【2025最新】基于SpringBoot+Vue的甘肃非物质文化网站管理系统源码+MyBatis+MySQL

💡实话实说:CSDN上做毕设辅导的都是专业技术服务,大家都要生活,这个很正常。我和其他人不同的是,我有自己的项目库存,不需要找别人拿货再加价,所以能给到超低价格。摘要 非物质文化遗产作为中华…