大模型落地第一步就错?LLM、RAG、Workflow、Agent 怎么选?这篇救你的命!

搞大模型落地,谁还没几个崩溃时刻了?这份保命指南请收好:

效果要显贵,基础款就不要再搭基础款

模型基础,数据就不基础;

架构基础,infra就不基础;

场景基础,方案就不基础;

如果全都基础,那甩锅就不基础……

但问题来了,关于落地方案选型,最近一年多,关于 LLM、RAG、workflow、agent、multi - agent孰优孰劣,各方观点吵得可谓是天翻地覆:

围绕大模型上下文窗口持续扩容RAG 是否已失去存在价值

围绕模型工具调用能力,LangChain 更相信 workflow 架构的可控性优势; OpenAI 力推 agent 的自主决策潜力谁说的对?

围绕agent 落地的技术路线,Devin(Cognitio 旗下自动编程软件)公开质疑 OpenAI、微软、Anthropic 推崇的 multi - agent 路线看似高级,实则是不可控性、上下文冗余与错误累加的代名词。

事实上,所有争论都可以概括为不能通用化与专业化、自主性与可控性、成本与性能,全都既要又要:

简单场景,就别嫌弃workflow不够酷

三个文档,就没必要费劲做个RAG

业务流程严谨,就别总想做个高级agent整花活儿……

那么 LLM、RAG、workflow、agent、multi - agent 这几大方案,在落地中,究竟该如何选?

在本文中,我们将结合场景指标与决策框架,为大家做出系统解读。

01

大模型上下文 还是 RAG?

看你的数据体量与来源

**矛盾:**大模型的长上下文能力增加,是否不再需要外部知识检索?

**痛点:**模型推理耗时过长、成本高昂、数据体量有限的问题,且存在数据安全隐患。难以实现多租、海量数据管理等难题。

**一句话结论:**两大方案互补,数据量大、需实时更新、数据隐私性强或有细粒度权限管控时优先选 RAG,单篇长文档处理且成本不敏感可短期依赖长上下文模型。

RAG 技术(检索增强生成)的核心价值在于打破大模型内存限制,通过外部数据检索为模型提供实时、专业、海量的知识支撑。精准解决了大模型幻觉、时效性差、专业知识不足三大核心痛点

但随着大模型的上下文长度不断增加,尤其随着 GPT - 5 将上下文拓展到 400k,RAG 消亡论的说法,再次抬头。

其逻辑在于,大模型已是强大检索器,何必再构建弱小检索器?

但一定程度上,RAG 与长上下文大模型并非替代关系,而是互补关系,其核心差异体现在数据特性与场景需求的匹配上:

从数据特性看,非结构化数据的 4V 特性(Volume 大量、Velocity 高速、Variety 多样、Value 价值)决定了单一方案难以应对。

原因如下:

  • **计算量爆炸:**首先,长上下文大模型的秒级响应仍是技术难题 —— 基于 transformer 的架构导致计算量随上下文长度呈二次增长,400k token 推理耗时远超实用阈值;
  • **成本门槛极高:**按当前定价,GPT - 5 处理 400k token 的单次推理成本远远高于普通 RAG 方案,日常高频场景根本无法承受;
  • **数据体量:**再者,数据体量差距悬殊,1000 万 token 仅能容纳约 500 本畅销书内容,而企业知识库、互联网索引的数据量往往以 PB 级计,不可能全部灌入模型。

因此,从场景需求看,RAG 在三类场景中不可替代:

一是实时性场景,如金融资讯生成需对接股市实时数据,RAG 可实现秒级检索更新;

二是专业领域场景,如医疗诊断需调用最新临床指南,RAG 能精准定位专业文献片段;

三是数据敏感场景,企业内部文档需权限管控,RAG 可通过检索权限隔离实现数据安全访问,而长上下文模型无法灵活控制数据可见范围。

落地决策指标:当数据量超过 100 万 token、需实时更新、存在细粒度权限管控需求时,优先选择 RAG;若仅是处理单篇长文档(如万字报告分析)且对成本不敏感,可短期依赖长上下文大模型。

02

workflow VS agent

可控与自主只能二选一

**矛盾:**Workflow 的 流程确定性”与 Agent 的 决策灵活性之间的取舍。

**痛点:**纯 Workflow 难以应对动态多变的需求场景,易陷入流程卡顿;纯 Agent 存在上下文失控风险,高精度场景中错误率较高。

**一句话结论:**混合架构为最优解,标准化场景用纯 Workflow,半标准化场景用 “Workflow + Agent” 混合架构,创新探索场景用纯 Agent 搭配人工审核。短期内多数需求可以用Workflow 搞定。

围绕 workflow 还是 agent,langchain与OpenAI的整理,我们的历史文章已经做过梳理,可以参考Langchain 吐槽OpenAI根本不懂 AI agent和workflow?知识点全解析

两者的共同目标都是让模型高效利用工具,区别则在于是解决流程确定性还是保持决策灵活性,因此,问题的核心在于如何在不同场景中平衡这两者的关系。

OpenAI 的 Agent 方案强调自主决策优先,其 “单一智能体 + 工具扩展” 模式开发门槛极低 —— 开发者调用预封装 Agent 类,几行代码即可实现天气查询、邮件发送等工具调用功能。

这种方案的优势在于灵活应对未知场景,例如智能助手在处理用户模糊需求(帮我安排下周适合出差的时间)时,能自主判断需要调用日历、天气、航班等工具并规划步骤。

但缺陷也很明显:过度抽象导致上下文失控,当系统消息缺失关键约束时,工具调用准确率甚至会出现断崖式暴跌,在金融交易等高精度场景中风险极高。

LangChain 倡导的 Workflow 方案则侧重流程可控优先,通过预定义代码路径编排工具调用顺序。例如电商客服退款流程,Workflow 可固定 “查询订单→验证权限→发起退款→发送通知” 四步流程,确保每步操作可追溯、可回滚。

这种方案在标准化场景中稳定性极强,但面对多变需求时灵活性不足 —— 若用户临时提出 先换货再退款,固定流程可能陷入卡顿。

因此,多数场景中,混合架构才是最优解:在流程前置环节用 Workflow 保证确定性,在决策核心环节,则可以 用 Agent 提升灵活性。

以智能客服为例,可通过 Workflow 实现 “用户提问→意图识别→任务分配” 的标准化分流,再让 Agent 处理具体任务中的动态决策(如 根据用户历史订单推荐退款方案),依此降低人工干预频率,兼顾稳定可控与场景适应能力。

落地决策框架:按场景标准化程度分级选择 —— 标准化场景(如发票验真、物流查询)用纯 Workflow;半标准化场景(如客服问题处理)用 “Workflow + Agent” 混合架构;创新探索场景(如科研实验设计)用纯 Agent,并搭配人工审核机制。

03

传统agent VS multi - agent

团队配合容易变成团伙作案

矛盾: multi - agent 的 复杂任务处理能力 与 不可控性及高成本 之间的权衡矛盾。

痛点: multi - agent存在错误传导效应易导致系统崩溃,token 消耗高使成本剧增,子任务耦合度高时协作效率大幅下降。

一句话结论: 满足 可拆解、可验证、成本可控 三可条件时可尝试 multi - agent,否则优先选择传统 Agent 方案。

一句话概括,multi - agent做好了,就是团队配合,做不好了,就是团伙作案。

multi - agent 的核心价值是通过分工协作解决单智能体无法完成的复杂任务,但这一优势的背后暗藏 不可控性 与 高成本 两大陷阱。

巨头们推崇 multi - agent 的逻辑在于复杂任务拆解能力:大型项目管理中,可拆解出资源分配、进度跟踪、风险评估等子任务,由不同 Agent 各司其职。

Anthropic 内部测试显示,其多智能体系统在复杂任务处理上比单智能体 Claude Opus 4 表现高出 90.2%。这种方案在任务可拆解、子任务边界清晰的场景中效率显著,例如电影制作可分为剧本生成、分镜设计、角色配音等独立子任务,由专业 Agent 协作完成。

但 Devin 联合创始人的吐槽直指要害:multi - agent 的 “错误传导效应” 可能导致系统崩溃。当一个 Agent 输出错误结果(如财务 Agent 误算成本),后续 Agent 会基于错误数据继续决策,最终引发连锁失误。此外,成本问题极为突出 ——Cognitio 数据显示,多智能体系统的 token 消耗是单智能体的 15 倍,在日均百万级交互的场景中,年成本可能相差上千万元。

落地红线标准:当任务满足 “三可” 条件 —— 可拆解(子任务间耦合度越小越好)、可验证(每个子任务结果可独立校验)、成本可控(预期 ROI够高,可以打平token消耗成本)时,可尝试 multi - agent;反之,若任务逻辑连贯(如代码调试)、错误容忍度低(如医疗诊断),则优先选择单 Agent 方案。

04

落地选择的综合决策矩阵

所有决策问题,都可被概括为综合通用化与专业化、自主性与可控性、成本与性能的较量,我们的决策可以参考下表:

最终决策路径则可以参考

  1. 明确核心需求:是解决知识准确性问题(选 RAG)、流程标准化问题(选 Workflow),还是复杂决策问题(选 Agent/multi - agent)?
  2. 评估约束条件:数据量是否超过模型承载能力?成本预算是否支持高 token 消耗?错误容忍度是否允许自主决策偏差?
  3. 选择混合方案:多数场景需组合技术,例如 “LLM + RAG + Workflow” 可实现专业知识检索 + 标准化流程;“Agent + Workflow” 可实现动态决策 + 关键节点管控。

技术落地没有万能方案,适合的才是最好的。

但如果甲方、领导,总是既要还要,那记住开头那句话,如果全都基础,那甩锅就不基础……

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1124546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度测评自考必备!9款AI论文软件TOP9全对比

深度测评自考必备!9款AI论文软件TOP9全对比 2026年自考论文写作工具测评:为何需要一份权威榜单? 随着人工智能技术的不断进步,越来越多的自考生开始借助AI论文软件提升写作效率。然而,市面上的工具种类繁多&#xff0c…

手写Spring IoC:注解+反射打造轻量级容器

手写Spring IoC:注解反射打造轻量级容器 深入理解Spring IoC核心原理,通过注解和反射机制手写一个简易版IoC容器,掌握依赖注入的本质。1. 引言:Spring IoC的魔力 在Spring框架中,IoC(控制反转)…

类型断言:强制类型转换的技巧

类型断言:强制类型转换的技巧 欢迎继续本专栏的第八篇文章。在前几期中,我们已逐步建立了 TypeScript 类型系统的坚实基础,涵盖了基本类型、特殊类型、枚举,以及数组和元组的处理。今天,我们将深入探讨类型断言这一关键…

大数据与财务管理专业就业岗位方向

2026年大专大数据与财务管理专业毕业生可选择的就业岗位涵盖数据分析、财务、金融科技等多个领域。该专业结合了大数据技术与财务管理知识,培养具备数据处理能力和财务分析能力的复合型人才。以下是详细的就业方向及岗位分析。数据分析类岗位岗位名称岗位职责技能要…

敏捷冲刺计划完全指南:理论框架、实践方法与工具体系

你大概率参加过这样的冲刺计划会:一屋子人对着Jira看板,产品经理念需求,工程师估算时间,最后列出一堆“理想情况”下能完成的任务。结果两周后发现:有的卡在依赖上,有的越做越大,还有的做完才发…

2kW 单向 Boost PFC + 全桥 LLC 串联谐振开关电源的 Matlab/Simulink 仿真探索

单向Boost PFC全桥LLC串联谐振开关电源Matlab/simulink仿真模型 2kw功率,输出48V,谐振频率100k LLC使用输出电压闭环/PFM控制最近在研究开关电源的小伙伴们,一定对功率因数校正(PFC)和 LLC 谐振变换器不陌生。今天就来…

贝佐斯/比尔盖茨/英伟达/英特尔等押注,NASA工程师带队打造通用机器人大脑,公司估值达20亿美元

在大模型可以从互联网、图像库和海量文本中「无限生长」的今天,机器人却被困在另一个世界——真实世界的数据极度稀缺、昂贵且不可复用。Business Insider 曾发布过一则看似轻巧却又极具洞察力的报道,「AI 机器人面临数据荒,一家初创公司找到…

WBS工作分解结构:从0掌握项目拆解核心方法与工具实战

如果你接过一个“三个月后上线新版本”或者“半年内完成系统重构”的任务,就知道那种感觉:目标很大,时间很长,但不知道怎么开始。WBS(工作分解结构)就是解决这个问题的——它不是复杂的理论,而是…

基于Java的仓库管理系统设计与实现

第3章 系统分析 为满足用户的需求,本章分析系统开发的可行性,将从技术和操作等方面来判断,然后通过需求分析、系统流程分析来确定仓库管理系统设计与实现的功能[7]。 3.1 技术可行性分析 仓库管理系统设计与实现在使用电脑和信息分析系统这些…

特斯拉Model3智能网联汽车自动驾驶虚拟教学实训软件

在职业教育的创新之路上,我们始终致力于将前沿技术转化为可触达的教学资源。今天,我们很荣幸向各位教育伙伴介绍一款专为智能网联汽车教学设计的虚拟实训软件——以特斯拉Model3为原型,融合理实一体的教学理念,助力课堂焕发新的活…

【vLLM 学习】Rlhf

vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。 更多 vLLM 中文文档及教程可访问 →vllm.hyper.ai/ *在线运行 vLLM 入门教程:零基础分步指南 源码 examples/offline_inference/r…

【光子AI / Photon AI】整理2021~2026 在 AI Agent、Multi-Agent Systems、多智能体学习、多智能体强化学习、协同智能/代理型智能体 等方向的 Papers

【光子AI / Photon AI】整理2021~2026 在 AI Agent、Multi-Agent Systems、多智能体学习、多智能体强化学习、协同智能/代理型智能体 等方向的 Papers 文章目录 【光子AI / Photon AI】整理2021~2026 在 AI Agent、Multi-Agent Systems、多智能体学习、多智能体强化学习、协同智…

枚举类型:常量集合的优雅管理

枚举类型:常量集合的优雅管理 欢迎继续本专栏的第七篇文章。在前几期中,我们已逐步深入 TypeScript 的类型系统,涵盖了基本类型、特殊类型如 any、unknown、void 和 never,以及 object 的处理。今天,我们将专注于枚举&…

Demo 骗了所有人?一做就会,一用就废!多模态 RAG 跨不过去的这道坎,看透了!

前言 近年来,GPT-4V、Gemini Pro Vision 等多模态大模型快速兴起,将图像、文本、音频等多种数据类型统一理解的能力,拓展到了搜索问答、辅助诊疗、法律检索等更复杂的任务场景中。 相比传统大语言模型(LLMs)&#xf…

无人值守智能污水处理控制系统:威纶通触摸屏与西门子PLC协同运行,真实工程项目稳定运行一年多供...

无人值守污水处理控制系统。 威纶通触摸屏与西门子200smart PLC编写的智能污水处理控制系统,带图纸,带PLC程序,触摸屏画面,控制要求,工艺流程,真实工程项目,已稳定运行一年多。 供大家学习参考在…

通过合理建模与架构设计,90% 的“JOIN 需求”可转化为 ES 原生支持的高效查询。

“通过合理建模与架构设计,90% 的‘JOIN 需求’可转化为 ES 原生支持的高效查询” 这一论断,是 Elasticsearch 工程实践的核心思想,其本质是用数据建模的前期成本,换取查询性能的指数级提升。一、建模范式:ES 的三大反…

‌测试教育路径:大学课程 vs 自学——2026年软件测试从业者专业成长指南

核心结论:能力为王,路径可选‌ 在2026年的中国软件测试行业,‌学历不再是职业发展的决定性门槛,工程能力与持续学习力才是晋升的核心引擎‌。无论是大学科班出身,还是自学转型者,只要掌握自动化测试、接口…

90%的程序员都在错误选择Embedding模型!6步评估框架+代码实战,让你避开所有坑,小白也能秒变向量专家!

通过通过将原始输入转换为固定大小的高维向量,捕捉语义信息,embedding(嵌入)模型在构建RAG、推荐系统,甚至自动驾驶的模型训练过程中都产生着至关重要的影响。 即使 OpenAI、Meta 和 Google 等科技巨头,也…

基于遗传算法优化的VMD信号去噪算法:样本熵与信噪比双重适应度函数提升信噪比及故障诊断特征提取研究

Matlab 基于遗传算法优化的VMD信号去噪算法 创新点:基于样本熵作为适应度函数 创新点2:基于信噪比作为适应度函数 提高信噪比 本人研究方向信号处理特征提取与故障诊断算法轴承振动信号中的微弱冲击特征总是被噪声淹没,这给旋转机械故障诊断…

测试人员压力管理:构建可持续的截止日期应对框架——面向软件质量守护者的专业生存指南

引言:被压缩的时间与被放大的责任 在敏捷开发与DevOps普及的浪潮中,测试工程师站在质量防线的最后关卡。IBM研究显示,78%的测试人员经历过程度不同的截止日期焦虑(2025),而因时间压力导致的漏测问题占生产…