收藏!Agent全面爆发!万字长文吃透上下文工程(小白程序员入门必备)

1、 Agent全面爆发的前夜:上下文成为核心变量

1.1 从Chatbot到Agent:能力形态的本质跃迁

在大语言模型(LLM)大规模落地到实际产品之前,Chatbot(聊天机器人)是最主流的应用形态。这种形态的工作逻辑十分简单:模型接收用户的单次输入后,在当前对话语境中生成一条回应,整个交互流程随即终止。

【小白注解】:这里的“当前上下文”可以理解为“本次聊天的即时信息”,比如你问Chatbot“今天天气”,它只需要基于“查询天气”这个当下需求回应,不需要记住你昨天问过什么。

在这种模式下,模型的核心关注点集中在单轮或有限几轮对话内。工程实践的核心也围绕提示词展开——比如如何精准描述需求、给模型设定明确角色,再加上简单的上下文拼接技巧。只要用户输入的需求足够清晰,模型通常都能给出可用的输出结果。

但随着LLM的应用场景越来越复杂,这种简单的交互方式开始暴露出明显短板。很多实际任务根本无法在一次对话中完成,比如“写一篇行业调研报告”“制定一份产品迭代方案”,这些任务都需要拆解成多个步骤,过程中还会产生大量中间结果(比如调研数据、方案框架、修改意见等)。如果模型只能“看到”当前这一轮的输入,就无法判断这些中间信息在整个任务流程中的位置,自然也难以保证行为和逻辑的连贯性。

Agent(智能体)的概念,正是在这种“复杂任务需求无法满足”的背景下被提出的。它的核心要求是:模型能够围绕一个明确的目标持续工作,根据已有的信息判断当前任务进展,自主决定下一步该采取的行动。要支撑这种“自主决策、持续推进”的能力,模型需要“看到”的信息量级大幅提升,上下文也由此从“辅助补充”升级为“核心支撑”,成为决定Agent能力上限的关键变量。

1.2 Agent出现的技术动因:对“持续状态感知”的刚性需求

从工程实现的角度来看,Agent的出现并非偶然,而是系统需求发生本质变化后的必然结果。在Agent的应用场景中,模型需要处理的不再仅仅是“用户的问题本身”,还包括:当前任务处于哪个阶段、已经完成了哪些步骤、产生了哪些中间结果、还有哪些子任务未解决。更重要的是,Agent往往需要借助外部工具(比如数据库查询、网页爬虫、代码执行工具等)获取信息或执行操作,这些工具调用的行为和结果,都会直接影响后续的决策方向。

这些变化,倒逼模型必须具备“感知历史信息”的能力——它需要清楚哪些行为已经发生、哪些结果已经产生、当前状态距离最终目标还有多远。如果这些关键信息无法被有效传递给模型,Agent的行为就会变得极其不稳定:可能反复执行同一个步骤,可能遗漏关键子任务,甚至可能偏离核心目标,出现“越做越偏”的情况。

因此,我们可以把Agent的本质需求归结为一点:模型需要在更大的时间尺度上,完整理解任务的上下文全貌。

1.3 上下文角色的重新定位:从“辅助补充”到“系统状态载体”

在LLM的早期应用中,上下文更多被视为“输入的补充说明”,核心作用是帮助模型理解当前问题的背景。比如你问“这个函数怎么优化”,补充一句“我用的是Python,处理的是百万级数据”,这部分补充信息就是上下文。这种用法下,上下文的存在与否,并不会对整个系统的结构产生决定性影响。

但进入Agent阶段后,上下文的角色发生了根本性转变:它开始承担“系统状态表达”的核心职责。模型的每一次决策,都会直接受到上下文内容的影响——上下文中包含的信息越完整、结构越清晰,模型就越容易判断当前所处的位置和下一步的行动方向。

这也意味着,上下文不再是“可以随意拼接的文本片段”,而是一种需要被“精心管理”的核心资源。工程实践中需要解决的关键问题包括:哪些信息需要长期保留(比如核心目标、关键约束条件)、哪些信息只在短时间内有效(比如某个中间步骤的临时结果)、哪些信息需要反复强调(比如任务的核心要求、禁止行为)。这些问题的处理方式,会直接影响Agent的行为效果和稳定性。

可以说,在Agent时代,模型的能力表现,很大程度上取决于上下文的组织和管理方式。

1.4 从提示工程到上下文工程:技术实践的自然演进

在Agent出现之前,提示工程是提升LLM表现的核心手段。通过设计精准的提示词(比如“请以产品经理的视角,用简洁的语言分析这个需求”),可以在不改动模型本身的前提下,显著改善输出质量。这种方式成本低、见效快,很快成为开发者最常用的调优手段。

但当系统开始引入“多轮决策”和“复杂状态管理”后,仅依赖提示词就很难满足控制需求了。核心原因在于:提示词更适合描述“固定的规则和格式”,却不擅长表达“持续变化的任务状态”。随着任务推进,上下文内容会不断增长,原本精心设计的提示词,很容易被大量的中间信息淹没,最终失去对模型的引导作用。

正是在这种背景下,上下文工程逐渐从提示工程中分离出来,成为一个独立的、关键的工程领域。它关注的核心问题不再是“某一句提示词写得好不好”,而是“如何构建、更新和裁剪整个上下文”,确保模型在每一个决策节点,都能获取到对当前判断最有价值的信息。

这一转变,不仅是技术思路的升级,更为后续Agent系统的工程化落地奠定了坚实基础。

2、提示词工程的能力边界

在大语言模型刚被引入实际应用时,提示词工程发挥了极其关键的作用。通过对输入内容进行精心设计,可以在不改动模型本身的前提下,显著改善输出质量。这种方式成本低、见效快,很快成为开发者最常用的调优手段。

在这一阶段,提示词主要承担两个任务:一是明确模型的角色和行为边界,二是约束输出的格式和风格。只要任务本身相对简单,提示词往往就足以支撑一个可用的应用。

这也是为什么,在相当长的一段时间内,人们会把模型能力的提升,与提示词写得好不好直接画上等号。

当任务开始涉及多步骤推理和持续决策时,提示词工程的局限逐渐显现出来。

提示词本质上是一种静态描述,它擅长表达规则,却不擅长反映变化。随着任务流程拉长,模型需要参考的信息越来越多,单一提示往往会被新的上下文内容不断稀释,最终失去控制力。

在这种情况下,开发者往往只能通过不断叠加提示内容来补救。结果是提示词本身变得越来越长,结构也越来越复杂,维护成本随之上升。

另一个不可忽视的问题,是提示词工程的可维护性。

提示词效果往往高度依赖具体模型版本和参数设置。当模型升级或环境发生变化时,原本表现良好的提示词,可能会突然失效。这种不确定性,使得提示词难以作为长期稳定的工程方案。

对于需要持续运行的系统而言,这种不稳定性会被不断放大。一旦提示词出现偏移,整个 Agent 的行为就可能发生变化,排查和修复成本也会迅速增加。

随着 Agent 系统逐渐成熟,人们开始意识到,单靠提示词已经无法承担全部控制职责。

模型的行为不只受到提示内容的影响,还与上下文中呈现的信息结构密切相关。即使提示词本身保持不变,只要上下文发生变化,模型的决策结果也可能出现明显差异。

这促使工程实践开始向更系统化的方向发展,提示词逐渐退居为其中的一个组成部分,而不再是唯一的调控工具。

3、上下文工程:一个被低估的系统问题

在实际工程中,最常见的一种误解,是把上下文工程简单理解为“尽可能多地把信息塞给模型”。

在上下文窗口不断扩大的背景下,这种做法看起来顺理成章,也一度被视为提升模型能力的直接手段。

但随着实践深入,问题很快暴露出来。模型虽然能够看到更多内容,却并不一定能从中提取出真正有用的信息。大量无关或低价值的上下文,反而会干扰模型的判断,使输出变得不稳定。

从工程视角来看,上下文是一种受限资源。它不仅受到长度限制,还受到模型注意力分布和推理能力的影响。上下文中每一段内容,都会与其他内容竞争模型的关注度。

如果上下文缺乏清晰的结构,模型就难以判断哪些信息是当前决策所必需的,哪些只是背景补充。最终表现为模型在不同轮次中给出风格和质量差异较大的输出。

因此,上下文工程需要解决的,是如何在有限空间内,持续为模型提供高价值信息,并避免无效干扰。

在 Agent 系统中,上下文往往需要承担状态表达的职责。模型需要通过上下文了解当前任务的进展情况,包括已经完成的步骤、产生的中间结果以及尚未解决的问题。

如果这些状态信息没有被明确表达,而是隐含在零散的历史对话中,模型就很难形成稳定的任务认知。即使模型本身具备较强的推理能力,也容易出现重复执行或偏离目标的情况。

将状态信息显性化,是上下文工程中一个非常重要的实践原则。

随着 Agent 持续运行,上下文内容不可避免地会不断增长。如果缺乏有效的更新与裁剪机制,上下文很快就会失控,既增加成本,也降低效果。

工程实践中,通常需要明确哪些信息是短期有效的,哪些需要被长期保留。通过定期整理和压缩上下文,可以让模型始终关注当前阶段最相关的内容。

这种动态管理方式,是上下文工程区别于提示工程的关键特征之一。

上下文工程所包含的模块

4、上下文工程的关键组成部分

4.1工具:让模型具备行动能力

在 Agent 系统中,工具是模型能力向外扩展的主要方式。通过工具调用,模型可以访问外部数据源、执行计算任务,甚至对现实系统产生直接影响。

以当前智能体(或者LLM)的视角来看,环境中所有它可以交互的对象都是它可以利用的工具,包括各种应用程序、各种网站服务、其他AI应用、其他智能体以及甚至人类(包括但不限于当前用户)。

正如Factor 7: Contact humans with tool calls和HuggingFace 博客Tiny Agents所展示的那样,每个智能体都可以主动地请求人类的介入,遇到歧义的地方可以主动寻求用户来澄清然后再进行下一步操作(见下图和下面的代码示例)。此时的用户就是当前智能体可以调用的工具。

不仅如此,生成最终答案(见Factor 7: Contact humans with tool calls)和指定任务状态(比如任务完成,见HuggingFace 博客Tiny Agents)也都能作为工具来调用,真的是万物工具化(everything is tools)。

const taskCompletionTool: ChatCompletionInputTool={type:"function", function:{name:"task_complete", description:"Call this tool when the task given by the user is complete", parameters:{type:"object", properties:{},},},};const askQuestionTool: ChatCompletionInputTool={type:"function", function:{name:"ask_question", description:"Ask a question to the user to get more info required to solve or clarify their problem.", parameters:{type:"object", properties:{},},},};const exitLoopTools=[taskCompletionTool, askQuestionTool];

4.2 工具调用结果的上下文反馈

工具调用并不是一次性行为,它会对后续决策产生持续影响。

模型在使用工具之后,需要能够看到调用结果,并将这些结果纳入接下来的判断中。

如果工具返回的信息只是简单拼接进上下文,而缺乏明确结构,模型往往难以判断哪些内容是关键结论,哪些只是过程性信息。长时间运行后,这种混乱会不断累积,最终影响 Agent 的整体稳定性。

因此,工具调用结果需要被结构化地写回上下文,使模型能够快速识别其语义角色。

4.3 思考过程的上下文表达

在复杂任务中,模型往往需要经过多步推理才能得出结论。

这些中间思考过程,对模型自身而言是有价值的,但并不意味着它们都应该被完整保留下来。

上下文工程需要在可解释性与效率之间做出权衡。某些阶段,显式保留中间推理有助于模型稳定决策;而在其他阶段,过多的推理痕迹反而会干扰后续判断。

工程实践中,常见的做法是对思考过程进行分层管理,仅在必要时将其纳入上下文。

4.4 交互:Agent 与环境的持续协同

Agent 并不是孤立运行的,它需要不断与外部环境交互。这种交互既包括成功执行后的正向反馈,也包括失败、异常以及不符合预期的结果。

上下文需要完整记录这些交互结果,让模型能够基于真实反馈调整行为策略。如果交互信息被忽略或丢失,模型很容易重复同样的错误。

因此,交互信息的管理,是上下文工程中不可或缺的一部分。

4.5 自主性与约束的平衡

随着 Agent 能力增强,模型的自主决策空间也在不断扩大。如果缺乏必要约束,模型可能会偏离预期目标,甚至产生不可控行为。

上下文工程在这里承担的是边界设定的角色。通过明确目标、约束条件以及可接受的行动范围,可以在不干预具体决策的情况下,引导模型行为朝着预期方向发展。

这种设计方式,使 Agent 能够在保持一定自由度的同时,避免行为失控。

5、MCP:上下文工程的结构化落地方式

当 Agent 系统逐渐复杂,上下文内容开始呈现出明显的工程问题。

不同模块生成的信息被不断拼接进上下文,状态、工具描述、历史记录混在一起,结构逐渐变得模糊。

在这种情况下,即便模型能力足够强,也很难稳定地理解当前上下文中各类信息的角色。工程上的问题并不在模型本身,而在于上下文缺乏统一的组织方式。

MCP 正是在这样的背景下被提出的。它试图解决的,是上下文在系统层面的可读性与可维护性问题。

MCP 的核心思路,是将上下文视为一种可以被规范化的接口,而不是自由拼接的文本。

在 MCP 体系中,不同类型的信息被明确区分,例如任务状态、可用能力、行为约束以及外部反馈。每一类信息都有相对固定的表达方式,模型可以据此判断其在决策中的作用。

这种做法并不会限制模型的生成能力,而是降低理解成本,使模型能够更快地抓住当前最重要的信息。

当上下文被结构化之后,系统的整体行为会变得更加可预测。模型在不同轮次中面对的上下文形式保持一致,即使具体内容发生变化,其语义角色依然清晰。

Manus上下文工程实践:将不用的工具掩盖掉,而不是移除掉

对于持续运行的 Agent 系统而言,这种一致性尤为重要。它可以显著降低行为漂移的风险,也让问题排查变得更加直接。

从工程角度看,结构化上下文也更利于模块化设计,不同组件可以围绕统一协议协同工作。

MCP 并非独立存在的组件,而是服务于整个 Agent 系统。通过 MCP,Agent 在运行过程中产生的状态变化、工具调用结果以及环境反馈,都可以被有序地写回上下文。模型在后续决策时,看到的是一个经过整理的状态快照,而不是零散的信息碎片。

这种协同方式,使得上下文真正成为系统运转的一部分。

6、智能体系统可靠性

作为一个智能系统,其稳定性需要额外关注。而上下文工程中的其中一环就是需要从工程的角度加强系统稳定性。

LangChain 博客How and when to build multi-agent systems中讲到了如何利用LangChain全家桶来构建和增强系统的稳定性或者可靠性(reliability),主要包括以下维度:

  • 可靠的执行和错误处理,这需要一个智能体编排框架,比如LangGraph。

  • 智能体调试和可观测性,这需要一个追踪、调试、交互系统,比如LangSmith和LangGraph Studio。

    • LangSmith 是一个统一的用于观测和评估AI应用的平台。具体地,LangSmith 可以调试、评估和监控AI应用及其性能。而且虽然LangSmith对LangChain的原生支持更好,但是它是独立于LangChain的,所以也可以很方便地应用于其他AI应用框架。
    • LangGraph Studio 是一个智能体集成开发环境(agent IDE),专门用于可视化、交互和调试基于LangGraph构建的智能体系统(agentic system)。而且LangGraph Studio集成了LangSmith,所以也支持观测和评估智能体系统。
  • 评估:无论是人工评估还是LLM评估(即LLM-as-a-Judge),在原型制作阶段可以先人工标注一些测试样本,并且可以借助于LLM来不断充实和完善。

    • LangSmith 也可以用于自动化或更高效地评估AI应用。

监控日志一方面供算法追踪和调试,另一方便还可以提供或者展示给用户。这样不仅可以增加AI应用的透明度和可解释性,还可以提升用户体验和便于建立AI应用与用户之间的信任。而且可以将LangGraph Studio提供给用户体验,那么在Studio集成的LangSmith监控系统的基础上,用户可以可视化地无代码地与智能体系统进行交互。这样不仅便于AI应用的开发测试人员收据用户反馈,而且用户使用体验和反馈更加真实有效。

总结与展望

从Chatbot到Agent,LLMs 的上下文也变得更加复杂多样。之前的提示工程主要围绕系统和用户提示词,而如今的上下文工程还要处理状态、记忆、工具和结构化输出等内容及其之间的协同工作。

在长期运行、多轮决策和工具协同的场景下,模型能否稳定发挥,往往取决于它所“看到”的上下文是否清晰、是否连贯、是否始终围绕当前目标展开。上下文不再只是输入的一部分,而是系统状态的集中体现。

这也解释了为什么,在 Agent 体系中,单纯依赖提示词已经难以支撑复杂需求。提示词仍然有价值,但更多承担的是局部约束和行为引导的角色。真正决定系统上限的,是上下文如何被构建、更新和管理。

从这个角度来看,上下文工程背后设计到的是一类系统性问题。它涉及信息筛选、状态表达、结构设计以及运行过程中的动态调整。这些问题一旦处理不当,模型能力再强,也难以转化为稳定输出。

随着 Agent 应用不断扩展,上下文工程的重要性只会进一步凸显。在 Agent 时代,这种可控性,正逐渐成为一项基础能力。

AI 正在从人类数据时代进入经验时代,即从收集和利用人类数据来训练模型到让智能体在与外界环境的自主交互中经历和成长。根据使用工具的经历来更新使用工具的经验只是其中一个典型案例。未来AI 的经验学习(experiential learning,俗称“干中学”)将更加贴近甚至超越人类。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套AI 大模型突围资料包

  • ✅ 从零到一的 AI 学习路径图
  • ✅ 大模型调优实战手册(附医疗/金融等大厂真实案例)
  • ✅ 百度/阿里专家闭门录播课
  • ✅ 大模型当下最新行业报告
  • ✅ 真实大厂面试真题
  • ✅ 2025 最新岗位需求图谱

所有资料 ⚡️ ,朋友们如果有需要《AI大模型入门+进阶学习资源包》下方扫码获取~

① 全套AI大模型应用开发视频教程

(包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点)

② 大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!

③ 大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

④ AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

⑤ 大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

⑥ 大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

以上资料如何领取?

为什么大家都在学大模型?

最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

不出1年,“有AI项目经验”将成为投递简历的门槛。

风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

以上全套大模型资料如何领取?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1124489.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于双层优化模型的电动汽车日前-实时两阶段市场竞标策略研究报告

MATLAB代码:基于双层优化的电动汽车日前-实时两阶段市场竞标 关键词:日前-实时市场竞标 电动汽车 双层优化 编程语言:MATLAB平台 参考文献:店主自编参考文献,可联系我查看 内容简介:代码主要做的是电动汽…

【高录用、快见刊】第二届能源工程与污染治理国际学术会议(EEPC 2026)

第二届能源工程与污染治理国际学术会议(EEPC 2026)将于2026年3月13-15日在大连召开,这是一个集中探讨全球能源工程与污染治理领域创新和挑战的国际学术平台。旨在汇集全球领域内的学者、研究人员、政策制定者以及业界领导者,共同探…

干货_常用提权辅助工具推荐

干货 | 常用提权辅助工具推荐 一、使用Windows-Exploit-Suggester解析systeminfo 1、简介 Windows-Exploit-Suggester是受Linux_Exploit_Suggester的启发而开发的一款提权辅助工具,用python开发而成,通过比对systeminfo生成的文件,从而发现…

外卖大军:“一口热饭”的需求引发的一系列多线程社会问题与困局

在现代都市的日常图景中,一个再平常不过的动作——点开手机,为一份即将送达的“热饭”支付费用——已成为数亿人的习惯。这份对即时温饱的朴素追求,却如同投入平静湖面的一颗石子,激荡起一连串深远而复杂的涟漪,最终汇…

学服务器训练AI模型:5步路径助力高效入门

想用服务器训练AI模型不少AI开发者都会陷入“看会操作、动手就崩”的困境:记混服务器连接命令、环境配置反复报错、训练时显存不足无措——纯视频学习只给流程演示,缺逻辑拆解和实操反馈,很难真正落地。我们需要通过视频内容快速提炼视频核心…

人工电销和AI机器人功能的根本区别是什么

“拨号两小时,沟通五分钟”“空号拒接占一半,有效线索难寻觅”“高频外呼就封号,业务中断心发慌”…… 这些电销困境,是不是正困扰着你的团队? 传统外呼模式下,人工效率低、封号风险高、数据管理乱三大痛点…

是德科技N9020B安捷伦N9020A N9030A频谱分析仪

N9020B是Keysight(是德科技)生产的一款高性能MXA系列信号分析仪,专为无线通信和射频测试设计,支持10 Hz至50 GHz频率范围,最高160 MHz分析带宽。 产品概述 N9020B是Keysight(原安捷伦)推出的‌M…

HP8920A安捷伦8921A 8920B综合测试仪对讲机测试仪

HP惠普8920A可选的合成频谱分析仪可测量400kHz~1GHz的信号,可变间距为5kHz~1GHz(全间距).显示分辩力可在每格1、2或10dB(分贝)之间进行选择。可调光标自动读出频率和幅度或者相对于基准而言的相对幅度。频谱分析仪所包括的跟踪发生…

风靡TikTok,影响超800万辆汽车,原因竟是一根USB 线?

风靡TikTok,影响超800万辆汽车,原因竟是一根 USB 线? Bleeping Computer 网站披露,韩国汽车制造商现代(Hyundai)和起亚(Kia)给旗下约 830 万辆汽车进行了防盗安全更新(预…

什么是Keychain

文章目录为什么需要keychainkeychain是由哪些部分组成keychain是如何工作的keychain的典型应用Keychain中的Key,不是算法,也不是密钥,而是一套加密和认证的规则。keychain通过对它拥有的一系列Key进行集中控制和灵活管理,为应用程…

Angular页面跳转03,Angular 路由导航:routerLink 指令与 Router 服务 navigate 方法全解析

在 Angular 应用开发中,路由导航是构建单页面应用(SPA)的核心能力。你在开发过程中一定会遇到两种主流的导航方式:模板中使用的routerLink指令,以及组件类中通过Router服务调用的navigate方法。本文将详细拆解这两种方…

是德科技33522B安捷伦33621A 33622A波形发生器

Keysight 33522B 是一款双通道波形发生器,采用Trueform 信号生成技术,旨在为电子测试和测量、通信系统验证及教育研究等领域提供高精度、低噪声的信号源。‌ 1 2 ‌核心特性与技术规格:‌ 该设备的核心优势在于 Trueform 技术,相比…

C/C++数据结构综合设计任务分配(29人7组)[2026-01-07]

C/C数据结构综合设计任务分配(29人7组)[2026-01-07] 一、整体任务概况 本次数据结构综合设计任务共分为7个小组,总计29人参与,每个小组负责不同的项目开发任务,每个项目包含多个功能模块,明确了各模块的问…

Angular页面跳转04,深入理解 Angular 路由参数:ActivatedRoute 中 paramMap 与 queryParamMap 的核心区别

在 Angular 开发中,路由参数传递是页面间数据通信的核心场景之一。而ActivatedRoute服务作为获取路由相关信息的核心入口,其提供的paramMap和queryParamMap两个属性常让开发者混淆 —— 它们看似都能获取参数,实则应用场景和使用方式截然不同…

Ai人声伴奏一键分离器!背景音乐提取器,纯本地运行,使用简单,音频分离工具 vocal-separate-v0.0.4

下载链接 https://tool.nineya.com/s/1jbucagia 软件介绍 这是一个极简的人声和背景音乐分离工具,本地化网页操作,无需连接外网,可以 将一首歌曲或者含有背景音乐的音视频文件,拖拽到本地网页中,即可将其中的人声和…

【程序员必看】AI Agent进化全解析:如何让“只会说话“的模型变成“能干活“的行动派

文章讲述了AI Agent从ChatGPT到能完成复杂任务的进化历程,分为五个关键阶段:从纯对话功能到函数调用、ReAct思考模式、RAG记忆系统,最后到多Agent协作。核心观点是,Agent并非AI本身的升级,而是人类将"如何工作&qu…

Siemens与NVIDIA扩大合作,共同打造工业人工智能运营系统

• Siemens与NVIDIA正借助人工智能技术,重塑覆盖设计、工程、制造、生产、运营直至供应链的端到端工业全价值链 • Siemens与NVIDIA将共同构建由人工智能加速的技术产品组合,涵盖人工智能原生电子设计、人工智能原生仿真以及人工智能驱动的自适应制造与供…

纺织厂的数字化转型是必要的吗,细看AI验布机对纺织厂的影响

如今时代已经过大幅变迁,科技愈发先进,致使各种AI型机器不断横空出世,AI验布机就是其中一个很好的例子,它很好用,但也不是所有工厂都适合立即引进。建议可以考虑的几种情况,帮助您科学判断是否需要进行智能…

手机屏幕翻译软件,可离线翻译,支持上百种语言翻译,学外语必备的翻译工具!免费使用~

​​​​​下载链接 https://tool.nineya.com/s/1jbu06k85 软件介绍 手机屏幕翻译软件,可离线翻译,支持上百种语言翻译,学外语必备的翻译工具!免费使用~ 软件特点 无需复制文字,直接扫描屏幕进行翻译内置翻译源&am…

2026 开年观察:地缘变局与降息预期交织,比特币在 9 万美元上谨慎前行

撰文:Yangz,Techub News2026 年开年,加密货币市场以温和上涨开局。比特币在 1 月 5 日涨至 9.4 万美元上方,较去年末的 8.7 万美元上涨约 8%,虽然现已回落至 9.3 万美元附近,但整体而言,开年的上…