Docker【部署 05】docker使用tensorflow-gpu安装及调用GPU踩坑记录

tensorflow-gpu安装及调用GPU踩坑记录

  • 1.安装tensorflow-gpu
  • 2.Docker使用GPU
    • 2.1 Could not find cuda drivers
    • 2.2 was unable to find libcuda.so DSO
    • 2.3 Could not find TensorRT&&Cannot dlopen some GPU libraries
    • 2.4 Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
    • 2.5 CuDNN library needs to have matching major version and equal or higher minor version

1.安装tensorflow-gpu

Building wheels for collected packages: tensorflow-gpuBuilding wheel for tensorflow-gpu (setup.py): startedBuilding wheel for tensorflow-gpu (setup.py): finished with status 'error'Running setup.py clean for tensorflow-gpuerror: subprocess-exited-with-error× python setup.py bdist_wheel did not run successfully.│ exit code: 1╰─> [18 lines of output]Traceback (most recent call last):File "<string>", line 2, in <module>File "<pip-setuptools-caller>", line 34, in <module>File "/tmp/pip-install-i6frcfa8/tensorflow-gpu_2cea358528754cc596c541f9c2ce45ca/setup.py", line 37, in <module>raise Exception(TF_REMOVAL_WARNING)Exception:=========================================================The "tensorflow-gpu" package has been removed!Please install "tensorflow" instead.Other than the name, the two packages have been identicalsince TensorFlow 2.1, or roughly since Sep 2019. For moreinformation, see: pypi.org/project/tensorflow-gpu=========================================================[end of output]note: This error originates from a subprocess, and is likely not a problem with pip.ERROR: Failed building wheel for tensorflow-gpu
Failed to build tensorflow-gpu

Other than the name, the two packages have been identical since TensorFlow 2.1 也就是说安装2.1版本的已经自带GPU支持。

2.Docker使用GPU

不同型号的GPU及驱动版本有所区别,环境驱动及CUDA版本如下:

[root@localhost ~]# nvidia-smi
# 查询结果
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.27.04    Driver Version: 460.27.04    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+

2.1 Could not find cuda drivers

# 报错
I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.

在Docker容器中的程序无法识别CUDA环境变量,可以尝试以下步骤来解决这个问题:

  1. 检查CUDA版本:首先,需要确认宿主机上已经正确安装了CUDA。在宿主机上运行nvcc --version命令来检查CUDA版本。
  2. 使用NVIDIA Docker镜像:NVIDIA提供了一些预先配置好的Docker镜像,这些镜像已经包含了CUDA和其他必要的库。可以使用这些镜像作为Dockerfile的基础镜像。
  3. 设置环境变量:在Dockerfile中,可以使用ENV指令来设置环境变量。例如,如果CUDA安装在/usr/local/cuda目录下,可以添加以下行到Dockerfile中:ENV PATH /usr/local/cuda/bin:$PATH
  4. 使用nvidia-docker:nvidia-docker是一个用于运行GPU加速的Docker容器的工具。

检测CUDA版本是必要的,由于使用的是导出的镜像文件,2和3的方法无法使用,最终使用-e进行环境变量设置:

# 添加cuda的环境变量
-e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH# 启动命令
nvidia-docker run --name deepface --privileged=true --restart=always --net="host" -e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH -v /root/.deepface/weights/:/root/.deepface/weights/ -v /usr/local/cuda-11.2/:/usr/local/cuda-11.2/ -d deepface_image

2.2 was unable to find libcuda.so DSO

I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:168] retrieving CUDA diagnostic information for host: localhost.localdomain
I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:175] hostname: localhost.localdomain
I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:199] libcuda reported version is: NOT_FOUND: was unable to find libcuda.so DSO loaded into this program
I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:203] kernel reported version is: 460.27.4

在Linux环境下,Docker可以支持将宿主机上的目录挂载到容器里。这意味着,如果宿主机上的目录包含软链接,那么这些软链接也会被挂载到容器中。然而,需要注意的是,这些软链接指向的路径必须在Docker容器中是可访问的。也就是说,如果软链接指向的路径没有被挂载到Docker容器中,那么在容器中访问这个软链接可能会失败。
原文链接:https://blog.csdn.net/u013546508/article/details/88637434,当前环境下问题解决步骤:

# 1.查找 libcuda.so 文件位置
find / -name libcuda.so*
# 查找结果
/usr/lib/libcuda.so
/usr/lib/libcuda.so.1
/usr/lib/libcuda.so.460.27.04
/usr/lib64/libcuda.so
/usr/lib64/libcuda.so.1
/usr/lib64/libcuda.so.460.27.04# 2.查看LD_LIBRARY_PATH
echo $LD_LIBRARY_PATH
# 查询结果
/usr/local/cuda/lib64# 3.将64位的libcuda.so.460.27.04复制到LD_LIBRARY_PATH路径下【libcuda.so和libcuda.so.1都是软连接】
cp /usr/lib64/libcuda.so.460.27.04 /usr/local/cuda-11.2/lib64/# 4.创建软连接
ln -s libcuda.so.460.27.04 libcuda.so.1
ln -s libcuda.so.1 libcuda.so

2.3 Could not find TensorRT&&Cannot dlopen some GPU libraries

I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
W tensorflow/core/common_runtime/gpu/gpu_device.cc:1960] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...

这个问题实际上是Docker镜像文件未安装TensorRT导致的,可以在Dockerfile里添加安装命令后重新构建镜像:

RUN pip install tensorrt -i https://pypi.tuna.tsinghua.edu.cn/simple

以下操作不推荐,进入容器进行安装:

# 1.查询容器ID
docker ps# 2.在running状态进入容器
docker exec -it ContainerID /bin/bash# 3.安装软件
pip install tensorrt -i https://pypi.tuna.tsinghua.edu.cn/simple# 4.提交新的镜像【可以将新的镜像导出使用】
docker commit ContainerID imageName:version

安装后的现象:

root@localhost:/app# python
Python 3.8.18 (default, Sep 20 2023, 11:41:31)
[GCC 12.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.# 使用tensorflow报错
>>> import tensorflow as tf
2023-10-09 10:15:55.482545: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-10-09 10:15:56.498608: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT# 先导入tensorrt后使用tensorflow看我用
>>> import tensorrt as tr
>>> import tensorflow as tf
>>> tf.test.is_gpu_available()
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2023-10-09 10:16:41.452672: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device /device:GPU:0 with 11389 MB memory:  -> device: 0, name: Tesla T4, pci bus id: 0000:2f:00.0, compute capability: 7.5
True

尝试解决,在容器启动要执行的py文件内加入以下代码,我将以下代码加入到app.py文件内:

import tensorrt as tr
import tensorflow as tfif __name__ == "__main__":available = tf.config.list_physical_devices('GPU')print(f"available:{available}")

加入代码后的文件为:

# 3rd parth dependencies
import tensorrt as tr
import tensorflow as tf
from flask import Flask
from routes import blueprintdef create_app():available = tf.config.list_physical_devices('GPU')print(f"available:{available}")app = Flask(__name__)app.register_blueprint(blueprint)return app

启动容器:

nvidia-docker run --name deepface --privileged=true --restart=always --net="host" -e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH -v /root/.deepface/weights/:/root/.deepface/weights/ -v /usr/local/cuda-11.2/:/usr/local/cuda-11.2/ -v /opt/xinan-facesearch-service-public/deepface/api/app.py:/app/app.py -d deepface_image

2.4 Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED

E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:437] Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:441] Memory usage: 1100742656 bytes free, 15843721216 bytes total.
E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:451] Possibly insufficient driver version: 460.27.4
W tensorflow/core/framework/op_kernel.cc:1828] OP_REQUIRES failed at conv_ops_impl.h:770 : UNIMPLEMENTED: DNN library is not found.

未安装cuDNN导致的问题,安装即可。

2.5 CuDNN library needs to have matching major version and equal or higher minor version

安装版本跟编译项目的版本不匹配,调整版本后成功使用GPU。

E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:425] Loaded runtime CuDNN library: 8.1.1 but source was compiled with: 8.6.0.  CuDNN library needs to have matching major version and equal or higher minor version. If using a binary install, upgrade your CuDNN library.  If building from sources, make sure the library loaded at runtime is compatible with the version specified during compile configuration.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/104013.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Unity Shader入门精要》笔记06

基础纹理 单张纹理纹理的属性Alpha SourceWrap ModeFilter Mode 凹凸映射高度纹理法线纹理实践在切线空间下计算在世界空间下计算 Unity中的法线纹理类型Create from Grayscale 渐变纹理遮罩纹理其他遮罩处理 单张纹理 我们通常会使用一张纹理来代替物体的漫反射颜色 Shader …

Nie et al. 2010 提出的不等式定理

这里写自定义目录标题 定理 定理 For any vector a a a and b b b, we have ∥ a ∥ 2 − ∥ a ∥ 2 2 ∥ b ∥ 2 ≤ ∥ b ∥ 2 − ∥ b ∥ 2 2 ∥ b ∥ 2 \|a\|_{2} - \frac{\|a\|_{2}}{2\|b\|_{2}} \leq \|b\|_{2} - \frac{\|b\|_{2}}{2\|b\|_{2}} ∥a∥2​−2∥b∥2​∥…

K8s Kubernetes Namespave Pod Label Deployment Service 实战

本章节将介绍如何在kubernetes集群中部署一个nginx服务&#xff0c;并且能够对其进行访问。 Namespace Namespace是kubernetes系统中的一种非常重要资源&#xff0c;它的主要作用是用来实现多套环境的资源隔离或者多租户的资源隔离。 默认情况下&#xff0c;kubernetes集群中…

面试10.13

笔试&#xff1a; 判断大小端的代码不使用库函数自己实现一个strcpy函数 自我介绍 项目相关 你项目中使用了Qt&#xff0c;你都用过哪些东西你使用了QTableView&#xff0c;它的初始界面是比较丑陋的&#xff0c;有想过如何优化吗信号和槽在不同线程间的使用方法有哪些&…

MySQL之双主双从读写分离

一个主机 Master1 用于处理所有写请求&#xff0c;它的从机 Slave1 和另一台主机 Master2 还有它的从 机 Slave2 负责所有读请求。当 Master1 主机宕机后&#xff0c; Master2 主机负责写请求&#xff0c; Master1 、 Master2 互为备机。架构图如下 : 准备 我们…

升级教育技术软件的多合一解决方案

当今时代技术和教育联系越来越紧密&#xff0c;教育机构对强大、安全、灵活的 IT 解决方案的探索至关重要。 全球事件、技术进步以及学生和教职员工不断变化的需求影响着不断变化的教育格局&#xff0c;我们要采取变革性的方法来确保教育的连续性和质量提升。 Splashtop Ente…

GEE:数据预处理的细节(处理顺序。比如, select() 和 filter() 要优先于 map())

作者:CSDN @ _养乐多_ 大家在数据预处理的时候,是不是随意进行处理,并没有考虑 Google Earth Engine(GEE)性能的问题?比如选择数据集的时候,先执行map函数,再按时间选择数据?不同的处理顺序会导致不同的计算成本。 因此,本文将探讨如何在 GEE 中筛选和选择数据集合…

力扣刷题 day43:10-13

1.完全平方数 给你一个整数 n &#xff0c;返回 和为 n 的完全平方数的最少数量 。 完全平方数 是一个整数&#xff0c;其值等于另一个整数的平方&#xff1b;换句话说&#xff0c;其值等于一个整数自乘的积。例如&#xff0c;1、4、9 和 16 都是完全平方数&#xff0c;而 3 …

20基于MATLAB的车牌识别算法,在环境较差的情景下,夜间识别度很差的车牌号码可以精确识别出具体结果,程序已调通,可直接替换自己的数据跑。

基于MATLAB的车牌识别算法&#xff0c;在环境较差的情景下&#xff0c;夜间识别度很差的车牌号码可以精确识别出具体结果&#xff0c;程序已调通&#xff0c;可直接替换自己的数据跑。 20matlab车牌识别 (xiaohongshu.com)

【融合ChatGPT等AI模型】Python-GEE遥感云大数据分析、管理与可视化及多领域案例实践应用

目录 第一章 理论基础 第二章 开发环境搭建 第三章 遥感大数据处理基础与ChatGPT等AI模型交互 第四章 典型案例操作实践 第五章 输入输出及数据资产高效管理 第六章 云端数据论文出版级可视化 更多应用 随着航空、航天、近地空间等多个遥感平台的不断发展&#xff0c;近…

react+antd封装表格组件2.0

reactantd封装表格组件2.0 1.0版本 仅仅封装组件&#xff0c;不涉及方法需要掌握知识点useImperativeHandle 组件代码引用 1.0版本 仅仅封装组件&#xff0c;不涉及方法 1.0 仅封装组件 此方法把所用方法集体封装&#xff0c;以后就可以无脑开发拉&#xff01; 只需传入路径&…

go 流程控制之switch 语句介绍

go 流程控制之switch 语句介绍 文章目录 go 流程控制之switch 语句介绍一、switch语句介绍1.1 认识 switch 语句1.2 基本语法 二、Go语言switch语句中case表达式求值顺序2.1 switch语句中case表达式求值次序介绍2.2 switch语句中case表达式的求值次序特点 三、switch 语句的灵活…

如何在 PyTorch 中冻结模型权重以进行迁移学习:分步教程

一、说明 迁移学习是一种机器学习技术&#xff0c;其中预先训练的模型适用于新的但类似的问题。迁移学习的关键步骤之一是能够冻结预训练模型的层&#xff0c;以便在训练期间仅更新网络的某些部分。当您想要保留预训练模型已经学习的特征时&#xff0c;冻结至关重要。在本教程中…

4年软件测试,突破不了20K,太卷了。。。

先说一个插曲&#xff1a;上个月我有同学在深圳被裁员了&#xff0c;和我一样都是软件测试&#xff0c;不过他是平安外包&#xff0c;所以整个组都撤了&#xff0c;他工资和我差不多都是14K。 现在IT互联网已经比较寒冬&#xff0c;特别是软件测试&#xff0c;裁员先裁测试&am…

【Monorepo实战】pnpm+turbo+vitepress构建公共组件库文档系统

Monorepo架构可以把多个独立的系统放到一起联调&#xff0c;本文记录基于pnpm > workspace功能&#xff0c;如何构建将vitepress和组件库进行联调&#xff0c;并且使用turbo进行任务顺序编排。 技术栈清单&#xff1a; pnpm 、vitepress 、turbo 一、需求分析 1、最终目标…

两台linux 之间传输文件 (详细+bash脚本)

两台linux设备文件直接传输&#xff0c;有很多应用场景 一、可能的方案 &#xff08;一&#xff09;先下载再上传 从linux通过ssh下载到windows下&#xff0c;然后再通过ssh上传到另一台linux。 1.优点&#xff1a;简单 2.缺点&#xff1a;效率低&#xff0c;需要额外的设备…

Node.js 新特性 SEA/单文件可执行应用尝鲜

#1 关于 SEA 单文件可执行应用&#xff08;SEA&#xff0c;Singe Executable Applications&#xff09;&#xff0c;是 Node.js 新版本的特性&#xff0c;最初在 v19.7.0、v18.16.0 加入&#xff0c;并在 v20.x 得到扩展。而上个月发布的全家桶 Bun.js&#xff0c;就自带了 SEA…

Docker部署rustdesk

查看镜像版本 https://hub.docker.com/r/rustdesk/rustdesk-server/tags 拉取镜像 docker pull rustdesk/rustdesk-server:1.1.8-2创建挂载目录 mkdir -p /opt/rustdesk/{hbbr,hbbs}/root运行hbbs –nethost 仅适用于 Linux&#xff0c;它让 hbbs/hbbr 可以看到对方真实的…

正点原子嵌入式linux驱动开发——Busybox根文件系统构建

前面已经移植了TF-A、Uboot和Linux kernel&#xff0c;就剩最后一个 rootfs(根文件系统)了&#xff0c;本章就来学习一下根文件系统的组成以及如何构建根文件系统。这是Linux系统移植的最后一步&#xff0c;根文件系统构建好以后就意味着拥有了一个完整的、可以运行的最小系统 …

大数据Doris(十):添加BE步骤

文章目录 添加BE步骤 一、使用mysql连接 二、​​​​​​​添加be