MCP(一)——QuickStart

目录

  • 1. MCP简介
  • 2. MCP的优势
  • 3. MCP核心
  • 4. QuickStart For Server Developers(仅具参考)
    • 4.1 MCP核心概念
    • 4.2 构建MCP服务器的代码
      • 4.2.1 设置MCP服务器实例
      • 4.2.2 辅助函数
      • 4.2.3 实现工具执行
      • 4.2.4 在Cherry-Studio中添加MCP服务器
      • 4.2.5 演示
        • 4.2.5.1 测试工具get_alerts
        • 4.2.5.2 测试工具get_forecast
      • 4.2.6 评价DeepSeek MCP调用的能力
  • 参考

1. MCP简介

  MCP(大模型上下文协议)是一个开放协议,旨在标准化应用程序向LLMs提供上下文的方式。可以将MCP视为AI应用的USB-C接口。正如USB-C为设备连接各种外设和配件提供了标准化方案,MCP则为AI模型连接不同数据源和工具提供了标准化途径。

2. MCP的优势

  MCP能帮助使用者在大语言模型之上构建智能体和复杂工作流。此外,大语言模型经常需要与数据和工具集成,而MCP提供了以下支持:
  1. 大语言模型可直接接入且不断增长的预构建集成列表。
  2. 灵活切换不同大语言模型供应商和服务商的能力(无须担忧切换了大语言模型就无法使用MCP、无须担忧切换了智能体框架就无法使用MCP)。
  3. 在你的基础设施内保护数据安全的最佳实践。

3. MCP核心

  MCP核心采用客户端-服务器架构,一个主机应用可连接多个服务器:
在这里插入图片描述
  MCP Hosts(MCP主机):如Claude桌面程序、集成开发环境或希望通过MCP访问数据的AI工具。
  MCP Clients(MCP客户端):与服务器保持一对一连接的协议客户端。
  MCP Servers(MCP服务器):通过标准化模型上下文协议暴露特定功能的轻量级程序。
  Local Data Sources(本地数据源):MCP服务器可安全访问的计算机文件、数据库及服务。
  Remote Services(远程服务):MCP服务器可通过互联网连接的外部系统,例如通过API。

4. QuickStart For Server Developers(仅具参考)

  modelcontextprotocol官网的QuickStart是构建一个查询美国天气的MCP天气服务器。该服务器会对外提供两个工具;get-alerts和get-forecast。官网选择了Claude桌面端作为演示该MCP的主机,但是Claude注册账户需要美国手机号,这里就使用cherry-studio作为主机,并且演示用的大语言模型选择为deepseek-reasoner。

4.1 MCP核心概念

  MCP服务器主要能提供三类功能:
  1. Resources(资源):可供客户端读取的类文件数据,如API响应或文件内容。
  2. Tools(工具):可由大语言模型调用的函数。
  3. Prompts(提示):预先编写的模板,帮助用户完成特定任务。

4.2 构建MCP服务器的代码

  以下所有代码都添加到weather.py中。

4.2.1 设置MCP服务器实例

  下面的代码通过FastMCP类来构建MCP服务器实例。FastMCP类利用Python类型提示和文档字符串自动生成工具定义,使得创建和维护MCP工具变得简单。

from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP# Initialize FastMCP server
mcp = FastMCP("weather")# Constants
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"

4.2.2 辅助函数

  添加用于查询和格式化来自美国气象局API数据的辅助函数:

async def make_nws_request(url: str) -> dict[str, Any] | None:"""Make a request to the NWS API with proper error handling."""headers = {"User-Agent": USER_AGENT,"Accept": "application/geo+json",}async with httpx.AsyncClient() as client:try:response = await client.get(url, headers=headers, timeout=30)response.raise_for_status()return response.json()except Exception:return Nonedef format_alert(feature: dict) -> str:props = feature["properties"]return f"""Event: {props.get('event', 'Unknown')}Area: {props.get('areaDesc', 'Unknown')}Severity: {props.get('severity', 'Unknown')}Description: {props.get('description', 'No description available')}Instructions: {props.get('instruction', 'No specific instructions')}"""

4.2.3 实现工具执行

  工具执行主要是通过mcp.tool()装饰器来实现的:

@mcp.tool()
async def get_alerts(state: str) -> str:"""Get weather alerts for a US state.Args:state: Two-letter US state code (e.g. CA, NY)"""url = f"{NWS_API_BASE}/alerts/active/area/{state}"data = await make_nws_request(url)if not data or "features" not in data:return "Unable to fetch alerts or no alerts fuond."if not data["features"]:return "no active alerts for this state."alerts = [format_alert(feature) for feature in data["features"]]return "\n-----\n".join(alerts)@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:"""Get weather forecast for a location.Args:latitude: Latitude of the locationlongitude: Longitude of the location"""points_url = f"{NWS_API_BASE}/points/{latitude},{longitude}"points_data = await make_nws_request(points_url)if not points_data:return "Unable to fetch forecast data for this location."forecast_url = points_data["properties"]["forecast"]forecast_data = await make_nws_request(forecast_url)if not forecast_data:return "Unable to fetch detailed forecast."periods = forecast_data["properties"]["periods"]forecasts = []for period in periods[:5]:forecast = f"""{period["name"]}:Temperature: {period["temperature"]}°{period["temperatureUnit"]}Wind: {period["windSpeed"]} {period["windDirection"]}Forecast: {period["detailedForecast"]}"""forecasts.append(forecast)return "\n----\n".join(forecasts)

4.2.4 在Cherry-Studio中添加MCP服务器

  Cherry-Studio下载:https://www.cherry-ai.com/download
  在模型服务中配置API_KEY或本地模型名:
在这里插入图片描述
  点击红圈所指的位置,进入后点击按钮安装uv和bun(需要挂梯子)。
在这里插入图片描述
在这里插入图片描述
  将前面代码构建的weather MCP服务器导入到cherry-studio中,按照下图中的内容填写配置,其中参数的具体内容如下(每行只能有一个参数):

--directory
D:\\project\\Python\\learnMCP\\QuickStart (weather.py所在目录的绝对路径,括号里的内容不需要填入)
run
weather.py

在这里插入图片描述
  点击保存并启用。

4.2.5 演示

4.2.5.1 测试工具get_alerts

在这里插入图片描述
  从上图中,可以看出可能是由于函数文档字符串不够详细的缘故导致deepseek-reasoner错误调用了get_alerts工具,下面是大模型调用工具时填写的参数以及得到的响应:
在这里插入图片描述
  这里错误调用的原因是state必须是两字母的城市缩写代码,比如New York必须填写为NY。下面我通过在提示词中输入了纽约的两位州代码是NY,使得大模型正确地调用了get_alerts工具,并得到了正确的响应。
在这里插入图片描述
在这里插入图片描述

4.2.5.2 测试工具get_forecast

在这里插入图片描述
在这里插入图片描述

4.2.6 评价DeepSeek MCP调用的能力

  此外,我还使用了DeepSeek Chat来测试它MCP调用的能力,上面没有展示。
  结论如下:DeepSeek Reasoner的MCP调用(工具调用)能力比DeepSeek-Chat好一点,但是两者在调用get_alerts工具时展现出的能力一样,都需要人为提示(部分原因还是MCP服务器工具函数的解释不够详细)。而在get_forecast工具的调用上,DeepSeek Reasoner能自己寻找到New York的经纬度从而正确完成工具的调用,与之相反,DeepSeek Chat则认为它需要一个工具来获取New York的经纬度从而无法完成工具的调用。
  Claude官方是MCP的提出者,据说Claude对工具的调用是目前大语言模型里最好的,可是Claude账户的注册需要境外手机号,也就无法测试比较了。

参考

https://modelcontextprotocol.io/introduction
https://modelcontextprotocol.io/quickstart/server

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/84080.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nginx网站功能

一.基于授权的访问控制 1.基于授权的访问控制简介 Nginx与Apahce 一样,可以实现基于用户授权的访问控制,当客户端想要访问相应网站或者目录时,要求用户输入用户名和密码才能正常访问,配置步骤与Apache基本一致。 2.基于授权的访…

海外盲盒系统开发:重构全球消费体验的科技引擎

当盲盒文化席卷全球,海外盲盒系统开发已成为重构消费体验的核心赛道。数据显示,2025年全球盲盒市场规模突破120亿,东南亚市场年增长率达4540。我们开发的海外盲盒系统,以技术创新为驱动,打造覆盖全链路的全球化解决方案…

数学建模初等模型应用

一、目的 掌握初等模型的建模方法,对简单的初等模型能借助Matlab工具软件进行辅助建模、求解和检验。 二、实验内容与设计思想(设计思路、主要代码分析) 1、预测鱼的质量 (1)设计思路:使用线性回归模型预测鱼的质量…

C 语言学习笔记(指针1)

内容提要 函数 变量的作用域变量的生命周期 指针 预备知识变量指针与指针变量 函数 变量的作用域 引入问题 我们在函数设计的过程中,经常要考虑对于参数的设计,换句话说,我们需要考虑函数需要几个参数,需要什么类型的参数&a…

【Linux】第二十二章 访问网络附加内存

1. NFS的主要功能是什么? NFS是由Linux、UNIX及类似操作系统使用的互联网标准协议,主要功能就是提供网络文件共享,允许不同的计算机系统之间通过网络共享文件,它使得网络上的计算机能够像访问本地文件系统一样访问远程计算机上的…

大模型时代,Python 近红外光谱与 Transformer 模型:学习的必要性探究

在当下大语言模型盛行的时代,各类新技术如潮水般不断涌现,让人应接不暇。身处这样的浪潮之中,不少人心中都会泛起疑问:Python 近红外光谱和 Transformer 模型还有学习的必要性吗?今天,就让我们深入探讨一番…

强化学习鱼书(7)——神经网络和Q学习

代码地址 书内附代码地址 https://github.com/oreilly-japan/deep-learning-from-scratch-4 环境搭建 0.建立虚拟环境 conda create -n env_test python3.10 conda activate env_test1.安装cuda 50系的显卡只支持torch的nightlycuda12.8版本,别的版本会显示no k…

数据建模与分析:从回归预测到特征聚类的全面探索(PyTorch)

文章目录 简介:数据建模简介回归分析回归分析简介回归分析建模判定系数估计标准差住房价格回归预测 聚类聚类简介聚类分析建模植物花卉特征聚类 主成分分析(PCA)主成分分析简介成分分析建模地区竞争力指标降维 简介: 在现代数据科…

uv 包管理工具使用教程

一、简介 uv 是一个基于 Rust 实现的超快 Python 包管理工具,旨在加速 Python 开发流程。它是 pip、pip-tools、virtualenv 和 venv 的现代替代品,支持更快的包解析、安装和虚拟环境创建。 主要特性包括: 极快的依赖解析与安装 自动创建和…

5分钟应急响应+99%达标率:AI智能监控重塑商业清洁新标准

一、方案整体架构 面对商业综合体日均10万客流量带来的管理挑战,传统保洁模式在人员监管、质量评估和应急响应方面存在显著瓶颈。本系统以全场景AI监控为核心,构建三级智能化管理体系: 1. 前端感知层:部署800万像素广角摄像…

裸金属服务器:解锁极致性能,拒绝虚拟化开销!

什么是裸金属服务器? 裸金属服务器(Bare Metal Server)是一种介于物理服务器和云服务器之间的新型计算服务形态。它既具备传统物理服务器的性能优势,又拥有云服务器的灵活性和便捷管理特性。与虚拟化云服务器不同,裸金…

[论文精读]Ward: Provable RAG Dataset Inference via LLM Watermarks

Ward: Provable RAG Dataset Inference via LLM Watermarks [2410.03537] Ward: Provable RAG Dataset Inference via LLM Watermarks ICLR 2025 Rebuttal:Ward: 可证明的 RAG 数据集推理通过 LLM 水印 | OpenReview --- Ward: Provable RAG Dataset Inference v…

【ffmpeg】ffprobe基本用法

ffprobe 是 FFmpeg 工具集中的一个强大命令行工具,主要用于分析多媒体文件(如视频、音频等)的格式和内容信息。它可以提取文件的元数据、编解码器信息、流详情、帧信息等,而无需对文件进行转码或修改。 基本用法 ffprobe [选项] …

有哪些GIF图片转换的开源工具

以下是关于GIF图片转换的开源工具的详细总结,涵盖功能特点、适用场景及用户评价: 1. FFmpeg 功能特点: 作为开源命令行工具,FFmpeg支持视频转GIF、调整帧率、分辨率、截取片段等操作,可通过脚本批量处理。适用场景: 适合开发者或技术用户进行高效批处理,常用于服务器端自…

js不同浏览器标签页、窗口或 iframe 之间可以相互通信

一、创建一个广播通道 // 创建一个名为 vue-apps-channel 的广播通道 const channel new BroadcastChannel(vue-apps-channel);二、发送消息 channel.postMessage({type: popup, message: false}); 三、接收消息(也需要创建广播通道) // 也创建一个…

【算法笔记day two】滑动窗口(不定长版)

前言 hello大家好,本期文章紧接着上期,讲述滑窗的下一个大分类——不定长。 定长滑窗请看我上期文章,有详细介绍。温馨提醒,代码大部分为手搓,答案方法不唯一。如果想要优雅的版本可以去找其他题解,我的…

Node.js Express 项目现代化打包部署全指南

Node.js Express 项目现代化打包部署全指南 一、项目准备阶段 1.1 依赖管理优化 # 生产依赖安装(示例) npm install express mongoose dotenv compression helmet# 开发依赖安装 npm install nodemon eslint types/node --save-dev1.2 环境变量配置 /…

Linux电源管理——PSCI初始化流程和多核启动流程

目录 一、PSCI 初始化流程 1、PSCI设备树节点 2、PSCI kernel初始化流程 get_set_conduit_method set_conduit psci_probe 二、CPU PSCI 操作初始化流程 1、CPU 设备树节点 2、 struct cpu_operations 3、kernel 流程 cpu_read_bootcpu_ops smp_init_cpus 三、CPU…

【Nginx学习笔记】:Fastapi服务部署单机Nginx配置说明

服务部署单机Nginx配置说明 服务.conf配置文件: upstream asr_backend {server 127.0.0.1:8010; }server {listen 80;server_name your_domain.com;location / {proxy_pass http://localhost:8000;proxy_set_header Host $host;proxy_set_header X-Real-IP $remot…

nfs存储IO等待,导致k8s业务系统卡慢问题处理

注:服务器配置:64C,128G,麒麟v10系统,系统磁盘使用空间(5T)均低于50%,存储磁盘iops约为800左右 发现业务系统卡慢,使用top 命令查看.系统负载较高长期保持在60以上,发现wa值的指标参数长期高于15,返现CPU用于写入磁盘IO等待的时间较高,系统的磁盘I/O压力较大. 配合开发查看日志…