YOLOv8改进------------SPFF-LSKA

YOLOv8改进------------SPFF-LSKA

    • 1、LSAK.py代码
    • 2、添加YAML文件yolov8_SPPF_LSKA.yaml
    • 3、添加SPPF_LSKA代码
    • 4、ultralytics/nn/modules/__init__.py注册模块
    • 5、ultralytics/nn/tasks.py注册模块
    • 6、导入yaml文件训练

1、LSAK.py代码

论文
代码

LSKA.py添加到ultralytics/nn/modules
在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partialfrom timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import mathclass Mlp(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Conv2d(in_features, hidden_features, 1)self.dwconv = DWConv(hidden_features)self.act = act_layer()self.fc2 = nn.Conv2d(hidden_features, out_features, 1)self.drop = nn.Dropout(drop)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x):x = self.fc1(x)x = self.dwconv(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xclass LSKA(nn.Module):def __init__(self, dim, k_size):super().__init__()self.k_size = k_sizeif k_size == 7:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,2), groups=dim, dilation=2)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=(2,0), groups=dim, dilation=2)elif k_size == 11:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,4), groups=dim, dilation=2)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=(4,0), groups=dim, dilation=2)elif k_size == 23:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 7), stride=(1,1), padding=(0,9), groups=dim, dilation=3)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(7, 1), stride=(1,1), padding=(9,0), groups=dim, dilation=3)elif k_size == 35:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 11), stride=(1,1), padding=(0,15), groups=dim, dilation=3)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(11, 1), stride=(1,1), padding=(15,0), groups=dim, dilation=3)elif k_size == 41:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 13), stride=(1,1), padding=(0,18), groups=dim, dilation=3)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(13, 1), stride=(1,1), padding=(18,0), groups=dim, dilation=3)elif k_size == 53:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 17), stride=(1,1), padding=(0,24), groups=dim, dilation=3)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(17, 1), stride=(1,1), padding=(24,0), groups=dim, dilation=3)self.conv1 = nn.Conv2d(dim, dim, 1)def forward(self, x):u = x.clone()attn = self.conv0h(x)attn = self.conv0v(attn)attn = self.conv_spatial_h(attn)attn = self.conv_spatial_v(attn)attn = self.conv1(attn)return u * attnclass Attention(nn.Module):def __init__(self, d_model, k_size):super().__init__()self.proj_1 = nn.Conv2d(d_model, d_model, 1)self.activation = nn.GELU()self.spatial_gating_unit = LSKA(d_model, k_size)self.proj_2 = nn.Conv2d(d_model, d_model, 1)def forward(self, x):shorcut = x.clone()x = self.proj_1(x)x = self.activation(x)x = self.spatial_gating_unit(x)x = self.proj_2(x)x = x + shorcutreturn xclass Block(nn.Module):def __init__(self, dim, k_size, mlp_ratio=4., drop=0.,drop_path=0., act_layer=nn.GELU):super().__init__()self.norm1 = nn.BatchNorm2d(dim)self.attn = Attention(dim, k_size)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = nn.BatchNorm2d(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)layer_scale_init_value = 1e-2self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x):x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.attn(self.norm1(x)))x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))return xclass OverlapPatchEmbed(nn.Module):""" Image to Patch Embedding"""def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):super().__init__()patch_size = to_2tuple(patch_size)self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,padding=(patch_size[0] // 2, patch_size[1] // 2))self.norm = nn.BatchNorm2d(embed_dim)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x):x = self.proj(x)_, _, H, W = x.shapex = self.norm(x)return x, H, Wclass VAN(nn.Module):def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],mlp_ratios=[4, 4, 4, 4], drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,depths=[3, 4, 6, 3], num_stages=4, flag=False, k_size=7, pretrained_cfg=None):super().__init__()if flag == False:self.num_classes = num_classesself.depths = depthsself.num_stages = num_stagesdpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rulecur = 0for i in range(num_stages):patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),patch_size=7 if i == 0 else 3,stride=4 if i == 0 else 2,in_chans=in_chans if i == 0 else embed_dims[i - 1],embed_dim=embed_dims[i])block = nn.ModuleList([Block(dim=embed_dims[i], k_size=k_size, mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j])for j in range(depths[i])])norm = norm_layer(embed_dims[i])cur += depths[i]setattr(self, f"patch_embed{i + 1}", patch_embed)setattr(self, f"block{i + 1}", block)setattr(self, f"norm{i + 1}", norm)# classification headself.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def freeze_patch_emb(self):self.patch_embed1.requires_grad = False@torch.jit.ignoredef no_weight_decay(self):return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be betterdef get_classifier(self):return self.headdef reset_classifier(self, num_classes, global_pool=''):self.num_classes = num_classesself.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()def forward_features(self, x):B = x.shape[0]for i in range(self.num_stages):patch_embed = getattr(self, f"patch_embed{i + 1}")block = getattr(self, f"block{i + 1}")norm = getattr(self, f"norm{i + 1}")x, H, W = patch_embed(x)for blk in block:x = blk(x)x = x.flatten(2).transpose(1, 2)x = norm(x)if i == self.num_stages - 1:x_feature_map = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()if i != self.num_stages - 1:x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()return x_feature_map, x.mean(dim=1)def forward(self, x):_, x = self.forward_features(x)x = self.head(x)return xclass DWConv(nn.Module):def __init__(self, dim=768):super(DWConv, self).__init__()self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)def forward(self, x):x = self.dwconv(x)return xdef _conv_filter(state_dict, patch_size=16):""" convert patch embedding weight from manual patchify + linear proj to conv"""out_dict = {}for k, v in state_dict.items():if 'patch_embed.proj.weight' in k:v = v.reshape((v.shape[0], 3, patch_size, patch_size))out_dict[k] = vreturn out_dictmodel_urls = {"van_tiny": "https://huggingface.co/Visual-Attention-Network/VAN-Tiny-original/resolve/main/van_tiny_754.pth.tar","van_small": "https://huggingface.co/Visual-Attention-Network/VAN-Small-original/resolve/main/van_small_811.pth.tar","van_base": "https://huggingface.co/Visual-Attention-Network/VAN-Base-original/resolve/main/van_base_828.pth.tar","van_large": "https://huggingface.co/Visual-Attention-Network/VAN-Large-original/resolve/main/van_large_839.pth.tar",
}def load_model_weights(model, arch, kwargs):url = model_urls[arch]checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)strict = Trueif "num_classes" in kwargs and kwargs["num_classes"] != 1000:strict = Falsedel checkpoint["state_dict"]["head.weight"]del checkpoint["state_dict"]["head.bias"]print('load model weights....')model.load_state_dict(checkpoint["state_dict"], strict=strict)return model@register_model
def van_tiny(pretrained=False, **kwargs):model = VAN(embed_dims=[32, 64, 160, 256], mlp_ratios=[8, 8, 4, 4],norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 3, 5, 2],**kwargs)model.default_cfg = _cfg()if pretrained:model = load_model_weights(model, "van_tiny", kwargs)return model@register_model
def van_small(pretrained=False, **kwargs):model = VAN(embed_dims=[64, 128, 320, 512], mlp_ratios=[8, 8, 4, 4],norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 4, 2],**kwargs)model.default_cfg = _cfg()if pretrained:model = load_model_weights(model, "van_small", kwargs)return model@register_model
def van_base(pretrained=False, **kwargs):model = VAN(embed_dims=[64, 128, 320, 512], mlp_ratios=[8, 8, 4, 4],norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 3, 12, 3],**kwargs)model.default_cfg = _cfg()if pretrained:model = load_model_weights(model, "van_base", kwargs)return model

2、添加YAML文件yolov8_SPPF_LSKA.yaml

添加到v8配置文件中ultralytics/cfg/models/v8/yolov8_SPPF_LSKA.yaml
在这里插入图片描述

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 7  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF_LSKA, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、添加SPPF_LSKA代码

(1)SPPF_LSKA代码添加到ultralytics/nn/modules/block.py
在这里插入图片描述

class SPPF_LSKA(nn.Module):"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))super().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * 4, c2, 1, 1)self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)self.lska = LSKA(c_ * 4, k_size=11)def forward(self, x):"""Forward pass through Ghost Convolution block."""x = self.cv1(x)y1 = self.m(x)y2 = self.m(y1)return self.cv2(self.lska(torch.cat((x, y1, y2, self.m(y2)), 1)))

(2)block.py代码顶部__all__中添加’SPPF_LSKA’,并导入LSKA模块,添加时一定注意使用英文标点符号

'SPPF_LSKA'
from .LSKA import LSKA

在这里插入图片描述

4、ultralytics/nn/modules/init.py注册模块

(1).block中导入SPPF_LSKA
在这里插入图片描述
(2)__all__中添加 ‘SPPF_LSKA’
在这里插入图片描述

5、ultralytics/nn/tasks.py注册模块

(2)在from ultralytics.nn.modules import导入SPPF_LSKA
在这里插入图片描述
(2)tasks.py中的def parse_modelif m in 语句中添加SPPF_LSKA

在这里插入图片描述

6、导入yaml文件训练

在这里插入图片描述

成功!!!!!!!
参考文章
https://blog.csdn.net/2301_78698967/article/details/139765522
https://blog.csdn.net/pope888/article/details/135536385

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/72522.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Lc(2)滑动窗口_1] 长度最小的数组 | 无重复字符的最长子串 | 最大连续1的个数 III | 将 x 减到 0 的最小操作数

目录 1. 长度最小的字数组 题解 代码 ⭕2.无重复字符的最长子串 题解 代码 3.最大连续1的个数 III 题解 代码 4.将 x 减到 0 的最小操作数 题解 代码 1. 长度最小的字数组 题目链接:209.长度最小的字数组 题目分析: 给定一个含有 n 个 正整数 的数组…

安卓binder驱动内核日志调试打印开放及原理(第一节)

背景: 经常有学员朋友在做系统开发时候,有时候遇到binder相关的一些问题,这个时候可能就需要比较多的binder相关日志,但是正常情况下这些binder通讯的的内核日志都是没有的打印的,因为经常binder通讯太过于频繁&#…

docker 安装达梦数据库(离线)

docker安装达梦数据库,官网上已经下载不了docker版本的了,下面可通过百度网盘下载 通过网盘分享的文件:dm8_20240715_x86_rh6_rq_single.tar.zip 链接: https://pan.baidu.com/s/1_ejcs_bRLZpICf69mPdK2w?pwdszj9 提取码: szj9 上传到服务…

MWC 2025 | 紫光展锐联合移远通信推出全面支持R16特性的5G模组RG620UA-EU

2025年世界移动通信大会(MWC 2025)期间,紫光展锐联合移远通信,正式发布了全面支持5G R16特性的模组RG620UA-EU,以强大的灵活性和便捷性赋能产业。 展锐芯加持,关键性能优异 RG620UA-EU模组基于紫光展锐V62…

达梦适配记录-检查服务器

service DmServicedmdb status 查看是否开启,没有配置systemctl,查看《DM8_Linux 服务脚本使用手册》2.1.2.2 1 .拷贝服务模板文件( DmService )到目录( /opt/dmdbms/bin ),并将新文…

Pipeline模式详解:提升程序处理效率的设计模式

文章目录 Pipeline模式详解:提升程序处理效率的设计模式引言Pipeline的基本概念Pipeline的工作原理Pipeline的优势Pipeline的应用场景1. 数据处理2. DevOps中的CI/CD3. 机器学习4. 图像处理 常见的Pipeline实现方式1. 函数式编程中的Pipeline2. 基于消息队列的Pipel…

STM32单片机芯片与内部115 DSP-FIR IIR低通 高通 带通 带阻 中值 自适应 滤波器 逐个数据实时 样条插值拟合

目录 一、FIR 低通、高通、带通、带阻 1、FIR滤波器特点 2、滤波器结构 3、滤波器系数 4、滤波实现 5、FIR 滤波后的群延迟 二、IIR 低通、高通、带通、带阻 1、IIR滤波器特点 2、滤波器结构 3、滤波器系数 4、滤波实现 5、IIR滤波后的群延迟 三、中值滤波 1、中值…

C语言_图书管理系统_借阅系统管理

✨✨ 欢迎大家来到小伞的大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:数据结构与算法 小伞的主页:xiaosan_blog 本文所需对顺序表的理解: 注:由于顺序表实现图书…

表达式基础

文章目录 1、表达式组成1、运算符 2、表达式的分类1、算数运算符1、自增运算符和自减运算2、取余运算(%)3、除法运算(/)4、案例 2、关系运算符3、逻辑运算符4、条件运算符(三目运算符)1、案例 5、赋值运算()1、赋值类型转换2、复合赋值运算 6、逗号运算7、取地址运算(&)8、…

除了合并接口,还有哪些优化 Flask API 的方法?

除了合并接口,还有许多其他方法可以优化 Flask API,以下从性能优化、代码结构优化、安全性优化、错误处理优化等方面详细介绍: 性能优化 1. 使用缓存 内存缓存:可以使用 Flask-Caching 扩展来实现内存缓存,减少对数…

Web服务器配置

配置虚拟主机 通过虚拟主机,可以实现用自定义的域名来访问,并且可以为不同的域名指定不同的站点目录。 配置IP地址和域名的映射关系 申请真实的域名需要一定的费用,为了方便开发,可以通过修改hosts文件来实现将任意域名解析到本…

爬虫逆向实战小记——解决webpack实记

注意!!!!某XX网站实例仅作为学习案例,禁止其他个人以及团体做谋利用途!!! aHR0cHM6Ly9wbW9zLnhqLnNnY2MuY29tLmNuOjIwMDgwL3B4Zi1zZXR0bGVtZW50LW91dG5ldHB1Yi8jL3B4Zi1zZXR0bGVtZW5…

蓝桥杯 之 前缀和与查分

文章目录 题目求和棋盘挖矿 前缀和有利于快速求解 区间的和、异或值 、乘积等情况差分是前缀和的反操作 前缀和 一维前缀和: # 原始的数组num,下标从1到n n len(num) pre [0]*(n1) for i in range(n):pre[i1] pre[i] num[i] # 如果需要求解num[l] 到num[r] 的区…

Windows10下本地搭建Manim环境

文章目录 1. 简介2. Python环境3. uv工具4. Latex软件5. 安装Manim数学库6. 中文支持参考 1. 简介 manim是个一科普动画的库, 本文用到的是社区版本。 2. Python环境 这个不用多说,可以参考其他的文章。记得把pip也安上。 3. uv工具 上面的pip是老…

#UVM# 关于field automation机制中的 pack_bytes 和unpack_bytes 函数剖析

一 pack_bytes 函数 在 UVM 中,pack_bytes 函数用于将类中的所有字段打包成一个字节流(byte stream)。这是 UVM 提供的字段自动化(field automation)机制的一部分,用于简化数据打包和传输。 extern function int pack_bytes(ref byte unsigned bytestream[], input uv…

YOLOv8 自定义目标检测

一、引言 YOLOv8 不仅支持预训练模型的推理,还允许用户将其应用于自定义对象检测。本文将详细介绍如何使用 YOLOv8 训练一个新的模型,并在自定义数据集上进行对象检测。 二、数据集准备 1. 数据集格式 YOLOv8 支持多种数据集格式,包括 CO…

关于tresos Studio(EB)的MCAL配置之GPT

概念 GPT,全称General Purpose Timer,就是个通用定时器,取的名字奇怪了点。定时器是一定要的,要么提供给BSW去使用,要么提供给OS去使用。 配置 General GptDeinitApi控制接口Gpt_DeInit是否启用 GptEnableDisable…

Dify 开源大语言模型应用开发平台使用(一)

文章目录 一、创建锂电池专业知识解答应用1.1 应用初始化 二、核心功能模块详解2.1 知识库构建2.2 工作流与节点编排节点类型说明工作流设计示例:锂电池选型咨询 2.3 变量管理 三、测试与调试3.1 单元测试3.2 压力测试3.3 安全验证 四、部署与优化建议4.1 部署配置4…

《Java基础 聊天窗口案例:剖析 GUI、文件 I/O 等关键技术知识》

1. 面向对象编程 类与对象:代码中定义了 Chat 类,它是整个程序的核心,封装了与聊天窗口相关的属性和方法。在 main 方法中创建了 Chat 类的对象,并调用其方法来完成相应的功能。继承与多态:ButtonClickListener 类实现…

IDE集成开发环境MyEclipse中安装SVN

打开Myeclipse的help菜单----install from site 点击add弹出对话框 在输入框中输入对应内容 http://subclipse.tigris.org/update_1.10.x 点击OK之后,会刷新出两个选项,需要选中的 点击next,出现许可的时候选中同意,一直结束等…