Moonshot AI 新突破:MoBA 为大语言模型长文本处理提效论文速读

前言

在自然语言处理领域,随着大语言模型(LLMs)不断拓展其阅读、理解和生成文本的能力,如何高效处理长文本成为一项关键挑战。近日,Moonshot AI Research 联合清华大学、浙江大学的研究人员提出了一种创新方法 —— 混合块注意力机制(Mixture of Block Attention,MoBA),它将专家混合(Mixture of Experts,MoE)原理应用于注意力机制,为解决长文本处理难题带来了新的思路。

在 Transformer 架构广泛应用的当下,其注意力机制存在明显弊端。在处理长文本时,传统注意力机制需将每个 token 与其他所有 token 进行比较,这使得计算成本随序列长度呈二次方增长。当模型处理长篇文档、多章书籍、法律简报或大型代码库等包含大量文本信息的任务时,这种计算成本会变得难以承受。此前,为解决这一问题,研究人员尝试过多种方法。例如,滑动窗口机制将 token 限制在局部邻域内,虽降低了计算量,但会忽略重要的全局关系;而一些彻底改变基本架构的方法,如用全新结构替代 softmax 注意力机制,往往需要从头开始重新训练模型,难以利用现有的预训练成果。

核心原理

MoBA 的出现有效弥补了上述方法的不足。它的核心在于将输入划分为易于管理的 “块”,并借助可训练的门控系统来确定每个查询 token 相关的块。这种设计遵循 “少结构” 原则,不预先定义哪些 token 应该相互作用,而是由学习到的门控网络做出决策。与固定结构或近似处理的方法不同,MoBA 能让模型自主学习注意力的聚焦点。而且,MoBA 可与现有的基于 Transformer 的模型无缝协作,它作为一种 “插件” 或替代方案,保持与原模型相同的参数数量,避免架构膨胀,同时保留因果掩码,确保自回归生成的准确性。在实际应用中,MoBA 能在稀疏注意力和全注意力之间灵活切换。处理超长输入时,稀疏注意力可提升速度;而在训练的某些层或阶段,若需要全注意力,模型也能切换回标准模式。

从技术细节来看,MoBA 将上下文划分为多个块,每个块包含连续的 token 序列。门控机制通过比较查询 token 与块的池化键表示,计算查询 token 与每个块之间的 “亲和度” 分数,然后选择得分最高的块。这样,只有最相关块中的 token 才会对最终的注意力分布产生影响。同时,包含查询 token 本身的块始终被纳入,以确保局部上下文信息可访问。并且,MoBA 执行因果掩码,防止 token 关注未来位置,维持从左到右的自回归属性。这种基于块的方法大幅减少了 token 比较次数,使计算规模低于二次方,随着上下文长度增加到数十万甚至数百万个 token,效率提升愈发显著。此外,MoBA 与现代加速器和专用内核兼容性良好。研究人员将 MoBA 与 FlashAttention(一种高性能的快速、内存高效的精确注意力库)相结合,根据所选块对查询 - 键 - 值操作进行精心分组,进一步优化了计算流程。实验数据显示,在处理一百万个 token 时,MoBA 相比传统全注意力机制速度提升约 6 倍,凸显了其在实际应用中的优势。

在性能测试方面,MoBA 表现出色。技术报告显示,在多种任务中,MoBA 的性能与全注意力机制相当,但在处理长序列时可显著节省计算资源。在语言建模数据测试中,当序列长度为 8192 或 32768 个 token 时,MoBA 的困惑度与全注意力 Transformer 相近。更为关键的是,当研究人员将上下文长度逐渐扩展到 128000 及更长时,MoBA 仍能保持强大的长上下文理解能力。在 “尾随 token” 评估中,MoBA 能够有效处理长提示末尾附近的 token 预测任务,且预测质量没有明显下降。研究人员还对 MoBA 的块大小和门控策略进行了敏感性探索。实验表明,细化粒度(使用更小的块但选择更多的块)有助于模型更接近全注意力的效果。即使在忽略大部分上下文的情况下,自适应门控也能识别与查询真正相关的块。此外,“混合” 模式展现出一种平衡策略:部分层继续使用 MoBA 提升速度,少数层则恢复全注意力。这种混合方法在监督微调任务中尤为有益,例如当输入中的某些位置在训练目标中被屏蔽时,保留少数上层的全注意力,可使模型保持广泛的上下文覆盖,有助于需要全局视角的任务。

关键代码分析:

以下是对 MoBA 库关键代码 MixedAttention 类的分析以及关键代码的摘录与注释:

整体分析

MixedAttention 类是一个自定义的 torch.autograd.Function,用于实现混合块注意力机制。这个类主要包含两个静态方法:forward 和 backward,分别用于前向传播和反向传播。

class MixedAttention(torch.autograd.Function):# 前向传播函数@staticmethoddef forward(ctx,q,  # 查询张量k,  # 键张量v,  # 值张量self_attn_cu_seqlen,  # 自注意力累积序列长度moba_q,  # MoBA 查询张量moba_kv,  # MoBA 键值张量moba_cu_seqlen_q,  # MoBA 查询累积序列长度moba_cu_seqlen_kv,  # MoBA 键值累积序列长度max_seqlen,  # 最大序列长度moba_chunk_size,  # MoBA 块大小moba_q_sh_indices,  # MoBA 查询块索引):# 保存一些参数,用于后续的反向传播ctx.max_seqlen = max_seqlenctx.moba_chunk_size = moba_chunk_sizectx.softmax_scale = softmax_scale = q.shape[-1] ** (-0.5)# 自注意力计算_, _, _, _, self_attn_out_sh, self_attn_lse_hs, _, _ = (_flash_attn_varlen_forward(q=q,k=k,v=v,cu_seqlens_q=self_attn_cu_seqlen,cu_seqlens_k=self_attn_cu_seqlen,max_seqlen_q=max_seqlen,max_seqlen_k=max_seqlen,softmax_scale=softmax_scale,causal=True,dropout_p=0.0,))# MoBA 注意力计算_, _, _, _, moba_attn_out, moba_attn_lse_hs, _, _ = _flash_attn_varlen_forward(q=moba_q,k=moba_kv[:, 0],v=moba_kv[:, 1],cu_seqlens_q=moba_cu_seqlen_q,cu_seqlens_k=moba_cu_seqlen_kv,max_seqlen_q=max_seqlen,max_seqlen_k=moba_chunk_size,softmax_scale=softmax_scale,causal=False,dropout_p=0.0,)# 转换 lse 形状,从 hs 转换为 sh(遵循传统混合注意力逻辑)self_attn_lse_sh = self_attn_lse_hs.t().contiguous()moba_attn_lse = moba_attn_lse_hs.t().contiguous()# 初始化输出缓冲区,形状与 q 相同output = torch.zeros((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)# 将输出张量展平为二维,便于后续索引操作output_2d = output.view(-1, q.shape[2])# 计算混合 lse# 减去最大 lse 以避免指数爆炸max_lse_1d = self_attn_lse_sh.view(-1)max_lse_1d = max_lse_1d.index_reduce(0, moba_q_sh_indices, moba_attn_lse.view(-1), "amax")self_attn_lse_sh = self_attn_lse_sh - max_lse_1d.view_as(self_attn_lse_sh)moba_attn_lse = (moba_attn_lse.view(-1).sub(max_lse_1d.index_select(0, moba_q_sh_indices)).reshape_as(moba_attn_lse))# 计算自注意力和 MoBA 注意力的 softmax 结果mixed_attn_se_sh = self_attn_lse_sh.exp()moba_attn_se = moba_attn_lse.exp()# 将 MoBA 注意力结果累加到自注意力结果上mixed_attn_se_sh.view(-1).index_add_(0, moba_q_sh_indices, moba_attn_se.view(-1))mixed_attn_lse_sh = mixed_attn_se_sh.log()# 加权自注意力输出factor = (self_attn_lse_sh - mixed_attn_lse_sh).exp()  # [ vS, H ]self_attn_out_sh = self_attn_out_sh * factor.unsqueeze(-1)output_2d += self_attn_out_sh.reshape_as(output_2d)# 加权 MoBA 输出mixed_attn_lse = (mixed_attn_lse_sh.view(-1).index_select(0, moba_q_sh_indices).view_as(moba_attn_lse))factor = (moba_attn_lse - mixed_attn_lse).exp()  # [ vS, H ]moba_attn_out = moba_attn_out * factor.unsqueeze(-1)raw_attn_out = moba_attn_out.view(-1, moba_attn_out.shape[-1])output_2d.index_add_(0, moba_q_sh_indices, raw_attn_out)# 将输出转换为与输入相同的数据类型output = output.to(q.dtype)# 恢复最大 lsemixed_attn_lse_sh = mixed_attn_lse_sh + max_lse_1d.view_as(mixed_attn_se_sh)# 保存中间结果,用于反向传播ctx.save_for_backward(output,mixed_attn_lse_sh,q,k,v,self_attn_cu_seqlen,moba_q,moba_kv,moba_cu_seqlen_q,moba_cu_seqlen_kv,moba_q_sh_indices,)return output# 反向传播函数@staticmethoddef backward(ctx, d_output):# 从上下文中获取保存的参数max_seqlen = ctx.max_seqlenmoba_chunk_size = ctx.moba_chunk_sizesoftmax_scale = ctx.softmax_scale(output,mixed_attn_vlse_sh,q,k,v,self_attn_cu_seqlen,moba_q,moba_kv,moba_cu_seqlen_q,moba_cu_seqlen_kv,moba_q_sh_indices,) = ctx.saved_tensors# 确保输入梯度连续d_output = d_output.contiguous()# 计算自注意力的梯度dq, dk, dv, _ = _flash_attn_varlen_backward(dout=d_output,q=q,k=k,v=v,out=output,softmax_lse=mixed_attn_vlse_sh.t().contiguous(),dq=None,dk=None,dv=None,cu_seqlens_q=self_attn_cu_seqlen,cu_seqlens_k=self_attn_cu_seqlen,max_seqlen_q=max_seqlen,max_seqlen_k=max_seqlen,softmax_scale=softmax_scale,causal=True,dropout_p=0.0,window_size=(-1, -1),softcap=0.0,alibi_slopes=None,deterministic=True,)# 计算 MoBA 注意力的梯度headdim = q.shape[-1]d_moba_output = (d_output.view(-1, headdim).index_select(0, moba_q_sh_indices).unsqueeze(1))moba_output = (output.view(-1, headdim).index_select(0, moba_q_sh_indices).unsqueeze(1))mixed_attn_vlse = (mixed_attn_vlse_sh.view(-1).index_select(0, moba_q_sh_indices).view(1, -1))dmq, dmk, dmv, _ = _flash_attn_varlen_backward(dout=d_moba_output,q=moba_q,k=moba_kv[:, 0],v=moba_kv[:, 1],out=moba_output,softmax_lse=mixed_attn_vlse,dq=None,dk=None,dv=None,cu_seqlens_q=moba_cu_seqlen_q,cu_seqlens_k=moba_cu_seqlen_kv,max_seqlen_q=max_seqlen,max_seqlen_k=moba_chunk_size,softmax_scale=softmax_scale,causal=False,dropout_p=0.0,window_size=(-1, -1),softcap=0.0,alibi_slopes=None,deterministic=True,)# 合并 MoBA 的键和值的梯度dmkv = torch.stack((dmk, dmv), dim=1)return dq, dk, dv, None, dmq, dmkv, None, None, None, None, None

代码关键部分解释

  • 前向传播 (forward)

    • 分别计算自注意力和 MoBA 注意力的结果。
    • 对注意力分数进行处理,包括形状转换、归一化等操作,以避免指数爆炸。
    • 将自注意力和 MoBA 注意力的结果进行加权合并,得到最终的输出。
    • 保存中间结果,用于后续的反向传播。
  • 反向传播 (backward)

    • 根据前向传播保存的中间结果,计算自注意力和 MoBA 注意力的梯度。
    • 最终返回各个输入张量的梯度。

小结

通过这种方式,MixedAttention 类实现了 MoBA 混合块注意力机制,通过将上下文划分为块并进行选择性的注意力计算,有效减少了计算量,提升了处理长文本的效率。

总结

总体而言,MoBA 非常适合处理涉及大量上下文的任务,如长篇文档阅读理解、大规模代码补全以及需要完整对话历史的多轮对话系统。它在提高效率的同时,性能损失极小,为大规模训练大语言模型提供了一种极具吸引力的方法。虽然目前 MoBA 主要应用于文本领域,但研究人员认为,其底层机制在其他数据模态中也具有应用潜力。只要序列长度足够长,引发计算或内存问题,将查询分配给块 “专家” 的思路就有望缓解瓶颈,同时保持处理关键全局依赖关系的能力。随着语言应用中的序列长度持续增长,像 MoBA 这样的方法可能会在推动神经语言建模的可扩展性和成本效益方面发挥关键作用,为人工智能的发展注入新的活力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/70604.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux中的查看命令

路径分为相对路径(行相对当前工作目录开始的路径)和绝对路径(不管是)#:命令提示符,从这个位置可以开始输入命令,另一个提示符为$,如果是root,则提示为#;如果是…

如何用校园内网远程连接服务器

注:本机家庭版windows11,要连接校园网,windows10/11一般都内置openssh,找到后安装,被连服务器是linux 一、先查看是否安装openssh,没有的话安装 方法一: -> 1.1 按下winR按键,…

AI客服-接入deepseek大模型到微信(本地部署deepseek集成微信自动收发消息)

1.本地部署 1.1 ollama Ollama软件通过其高度优化的推理引擎和先进的内存管理机制,显著提升了大型语言模型在本地设备上的运行效率。其核心采用了量化技术(Quantization)以降低模型的计算复杂度和存储需求,同时结合张量并行计算&…

使用 Docker-compose 部署 MySQL

使用 Docker Compose 部署 MySQL 本文将详细指导如何使用 docker-compose 部署 MySQL,包括基本配置、启动步骤、数据持久化以及一些高级选项。通过容器化部署 MySQL,你可以快速搭建一个隔离的数据库环境,适用于开发、测试或小型生产场景。 关…

HTML 中的 Canvas 样式设置全解

在 HTML5 中&#xff0c;<canvas> 元素提供了一个强大的绘图接口&#xff0c;允许开发者通过 JavaScript 实现各种图形和动画效果。为了充分利用 <canvas> 的功能&#xff0c;理解其样式设置是至关重要的。本文将详细介绍如何在 HTML 中设置 <canvas> 的各种…

【论文解析】Fast prediction mode selection and CU partition for HEVC intra coding

级别:IET Image Processing(2020)CCF CSCI 4区时间:2020年机构:苏州大学下载地址:Fast prediction mode selection and CU partition for HEVC intra coding摘要 HEVC确实是一个很大的进步,编码效率翻倍,但计算复杂度也增加了不少。为了解决这个问题,提出了两种算法:…

大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(2)

Paimon的下载及安装&#xff0c;并且了解了主键表的引擎以及changelog-producer的含义参考&#xff1a; 大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(1) 利用Paimon表做lookup join&#xff0c;集成mysql cdc等参考&#xff1a; 大数据组件(四)快速入门实时数据…

智慧校园系统在学生学习与生活中的应用

随着科技的快速发展&#xff0c;智慧校园系统逐渐成为现代教育不可或缺的一部分。它整合了先进的信息技术、物联网技术以及人工智能等&#xff0c;旨在构建一个全面、智能、个性化的学习与生活环境。对于学生而言&#xff0c;这一系统不仅能够极大地提高学习效率&#xff0c;还…

基于Flask的京东商品信息可视化分析系统的设计与实现

【Flask】基于Flask的京东商品信息可视化分析系统的设计与实现&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 系统能够灵活地执行SQL查询&#xff0c;提取出用于分析的关键数据指标。为了将这…

Electron通过ffi-napi调用dll导出接口

electron使用ffi-napi环境搭建 附打包好的ffi-napi可以直接放到项目目录下使用&#xff0c;避免以后麻烦 一、安装node.js Node.js官网&#xff1a;https://nodejs.org/zh-cn/download&#xff0c;选择LTS长期稳定版本即可 需要注意Node.js 区分32和64位&#xff0c;32位版…

25工程管理研究生复试面试问题汇总 工程管理专业知识问题很全! 工程管理复试全流程攻略 工程管理考研复试真题汇总

工程管理复试面试心里没底&#xff1f;别慌&#xff01;学姐手把手教你怎么应对复试&#xff01; 很多同学面对复试总担心踩坑&#xff0c;其实只要避开雷区掌握核心技巧&#xff0c;逆袭上岸完全有可能&#xff01;这份保姆级指南帮你快速锁定重点&#xff0c;时间紧迫优先背…

深蓝学院自主泊车第3次作业-IPM

目录 1 题目介绍2 求解 1 题目介绍 已知鱼眼相机的参数&#xff0c; image_width&#xff0c;表示图像的宽度image_height&#xff0c;表示图像的高度 ξ \xi ξ&#xff0c;表示鱼眼相机参数 k 1 k_1 k1​、 k 2 k_2 k2​&#xff0c;表示径向相机参数 p 1 p_1 p1​、 p 2 p…

核货宝助力连锁门店订货数字化转型升级

在竞争激烈的连锁零售行业&#xff0c;传统订货模式弊端日益凸显&#xff0c;严重制约着企业的发展。核货宝订货系统以其卓越的数字化解决方案&#xff0c;为连锁门店订货带来了全方位的变革&#xff0c;助力企业实现数字化转型升级&#xff0c;在市场中抢占先机。 一、增强总部…

2.最多提取子串数目(100分)-附带Java逐行解析

题目 给定 [a-z]&#xff0c;26个英文字母小写字符串组成的字符串 A 和 B&#xff0c;其中 A 可能存在重复字母&#xff0c;B 不会存在重复字母&#xff0c;现从字符串 A 中按规则挑选一些字母&#xff0c;可以组成字符串B。 挑选规则如下&#xff1a; 同一个位置的字母只能挑…

AutoGen 技术博客系列 八:深入剖析 Swarm—— 智能体协作的新范式

本系列博文在掘金同步发布, 更多优质文章&#xff0c;请关注本人掘金账号&#xff1a; 人肉推土机的掘金账号 AutoGen系列一&#xff1a;基础介绍与入门教程 AutoGen系列二&#xff1a;深入自定义智能体 AutoGen系列三&#xff1a;内置智能体的应用与实战 AutoGen系列四&am…

力扣每日一题【算法学习day.132】

前言 ###我做这类文章一个重要的目的还是记录自己的学习过程&#xff0c;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关键点&#xff0c;力扣上的大佬们的题解质量是非常非常高滴&#xff01;&#xff01;&#xff01; 习题 1.统计相似字符串对的数目 题目链…

C语言.h头文件的写法

头文件的内容 #ifndef __SEQUENCE_LIST_H // 定义以防止递归包含 #define __SEQUENCE_LIST_H // (1)、其它头文件 #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <stdbool.h> // (2)、宏定义(函数、变量、常量) // (3)、…

Spring AI + Ollama 实现调用DeepSeek-R1模型API

一、前言 随着人工智能技术的飞速发展&#xff0c;大语言模型&#xff08;LLM&#xff09;在各个领域的应用越来越广泛。DeepSeek 作为一款备受瞩目的国产大语言模型&#xff0c;凭借其强大的自然语言处理能力和丰富的知识储备&#xff0c;迅速成为业界关注的焦点。无论是文本生…

自学Java-AI结合GUI开发一个石头迷阵的游戏

自学Java-AI结合GUI开发一个石头迷阵的游戏 准备环节1、创建石头迷阵的界面2、打乱顺序3、控制上下左右移动4、判断是否通关5、统计移动步骤&#xff0c;重启游戏6、拓展问题 准备环节 技术&#xff1a; 1、GUI界面编程 2、二维数组 3、程序流程控制 4、面向对象编程 ∙ \bulle…

C语言的内存分配:malloc和free

使用库函数分配和管理内存。在运行时&#xff0c;分配更多的内存给程序使用&#xff0c;主要工具是malloc函数&#xff0c;这个函数接受一个参数&#xff1a;所需要要的内存字节数。malloc函数会找到合适的空闲内存块&#xff0c;这样的内存是匿名的&#xff0c;即malloc分配了…